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1 Problem

We start with the following problem: let s ∈ Rn be an unknown n-dimensional real-valued
signal, we observe all the values of s with an unknown order, the goal is to recover the
original signal s. More formally, given the scrambled signal g ∈ Rn := Ps, where P is an
unknown permutation matrix with {0, 1} values satisfying that Pij = 1 if and only if gi = sj,
can we reconstruct s (exactly or approximately)?

The answer is ”No” if no further assumptions are made for the signal s. In this case,
the only condition we can use to recover s is that s is a sequence of samples coming from
a continuous-time signal. However, according to the theory of interpolation [1], for any
sequence of real numbers, we can always construct a continuous-time signal by computing
the convolution with a sinc function (or by passing the samples through an ideal low-pass
filter). As a result, for a general signal s, recovery from the permuted signal g is impossible.

To make the above recovery problem tractable, we add one restriction to the original
signal s and assume that s is k-sparse in the frequency domain. In other words, let F be
the n-by-n matrix for computing the Discrete Fourier Transform (DFT) of s, i.e., the entry
of F in the i-th row and m-th column is defined as

Flm = e−i2π(l−1)(m−1)/n, ∀l ∈ [n], m ∈ [n],

we assume that the frequency-domain representation of the original signal S ∈ Cn := Fs
has at most k nonzero values. More formally, let ||v||0 denote the number of non-zero terms
of vector v, then our problem can be formulated as follows:

Given: ||Fs||0 ≤ k, and g = Ps, where P is an unknown permutation matrix,
Goal: recover s ∈ Rn (exactly or approximately).

Note that our problem of recovering from its permutations is related to but is different
from the conventional sparse signal recovery problem [2, 3, 4, 5]. In the setting of a sparse
signal recovery problem, the goal is to reconstruct a k-sparse signal x from a limited number
of linear measurements y := Ax, where A is a known m-by-n measurement matrix.

Ideally, we want to solve the following optimization problem

minimize: ||FP̂g||0
subject to: P̂ is a permutation matrix (1)

We have encountered two issues regarding solving (1), as explained follows.
Complexity issue. Directly solving (1) is computationally costly as it would involve

exhaustive search over the region of all permutation matrices (which has a size of n!). One



computationally efficient approach is to relax (1) into a convex optimization problem: first
relax the objective function to its convex envelope, which is l1−norm; then relax the con-
straint to the convex hull of permutation matrices, which is the set of all doubly stochastic
matrices (the Birkhoff polytope [7, 8]). Accordingly, (1) is relaxed to the following convex
problem:

minimize: ||FP̂g||1
subject to:

∑
j

P̂ij = 1, ∀i ∈ [n]∑
i

P̂ij = 1, ∀j ∈ [n] (2)

P̂ij ≥ 0, ∀i, j

The relaxed convex optimization problem (2) can be solved in polynomial time, however,
the following theorem says that the optimal solution to (2) provides no information of what
the original signal s looks like.

Claim 1. P̂ ∗ = 1
n
1 · 1T is the optimal solution to (2).

Remark. Proof of this claim can be found in Appendix A. Claim 1 indicates that the optimal
solution to (2) does not depend on s. In other words, there is no way to recover or estimate
the original signal s by solving the convex relaxation problem (2).

Uniqueness issue. One natural question about the optimization problem (1) would be:
is the original signal s the unique solution to (1)? Equivalently, we want to know that among
all the possible permuted versions of s, whether s is the unique signal that has a k-sparse
frequency-domain representation. The answer to this question is crucial to our problem,
because if v is a rearrangement of s, and ||Fv||0 ≤ k, then we cannot recover s by exactly
solving (1). Unfortunately, the following claim says that we can always find such a signal v.

Claim 2. Let x be a n-dimensional signal and Fx be its Fourier spectrum. Let σ be any
integer that is invertible mod n, and for any integer τ ∈ [n], we can define a permutation
matrix P such that (Px)i = xσi+τ , for i ∈ [n]. Then in the frequency domain, we have
|(FPx)σi| = |(Fx)i|.

Remark. Proof of this claim can be found in [6]. It provides a way to permute a signal x in
the time-domain, but at the same time retains the level of sparsity in the frequency domain.
Therefore, there is no way to recover s from its permuted version by only knowing that s is
k-sparse in the frequency domain. This indicates that the problem that we consider is not a
valid problem. To continue with this project, we would like to consider a related problem,
as defined in the next section.

2 Problem Redefined

We now redefine the problem as follows: given a vector g ∈ Rn, and a matrix M ∈ Rn×n,
where each entry mij ∼ N(0, 1/n) is i.i.d. Gaussian distributed, the goal is to find an optimal



permutation matrix P such that ||MPg||1 is minimized. This corresponds to the following
optimization program:

OPT = minimize: ||MPg||1
subject to:

∑
j

Pij = 1, ∀i ∈ [n]∑
i

Pij = 1, ∀j ∈ [n] (3)

Pij ∈ {0, 1} ∀i, j.

Exhaustive search over all the permutation matrices would need n! time. Our goal here is
to find a polynomial-time α-approximation algorithm. The following claim indicates that a
effective approximation algorithm should provide an α less than or equal to

√
n.

Claim 3. Randomly choosing a permutation matrix gives a
√
n-approximation algorithm for

n→∞.

Proof. Since M is a random Gaussian matrix, the Norm preservation lemma (which is a key
step to prove the Johnson-Linderstrauss lemma [9]) shows that ||MPg||2 → ||g||2 as n→∞.
Furthermore, for any permutation matrix P and a sufficiently large n, we have

||g|| ≈ ||MPg||2 ≤ ||MPg||1 ≤
√
n||MPg||2 ≈

√
n||g||2.

This indicates that OPT≥ ||g||2. And for a randomly chosen permutation matrix P̂ , we have
||MP̂g||1 ≤

√
n||g||2 ≤

√
n ·OPT.

Similar to the optimization problem stated in Section 1, program (3) has a convex objec-
tive function, but an non-convex feasible set because of the integer constraint Pij ∈ {0, 1}.
By relaxing it to Pij ≥ 0, we can obtain a convex optimization program relaxation, which
looks exactly as in (2), except that the DFT matrix F is now changed to a random Gaussian
matrix M . Suppose P ∗ is the optimal solution of the relaxed convex program, we then get a
lower bound on OPT: OPT≥ ||MP ∗g||1. Note that P ∗ is a doubly stochastic matrix, but P ∗

does not necessarily equal 1
n
1 ·1T since Claim 1 depends on the special structure of F . Then

a key problem is: how to get a permutation matrix from P ∗ and bound the corresponding
approximation error?

Idea 1: add a regularization term. This technique is commonly used in machine
learning problems (e.g., Lasso and Ridge regression) to prevent overfitting. The idea is to
add a term to the objective function so as to penalize solutions with undesired properties.
For instance, in the regularized regression problem, a term of λ|| · || is added to the loss
function so that the optimal solution does not have a large norm. The parameter λ can be
tuned so as to balance between how much we penalize a large norm and how much we want
to deviate from the original loss function.

The same technique may be applied here. Since permutation matrices have a larger
Frobenius norm than any doubly stochastic matrices (note that their l1 norms are the same),
we want to penalize solutions with a small Frobenius norm. In other words, we want to change
the objective function of (3) to ||MPg||1 − λ||P ||F . However, the main problem is that the



regularized objective function is now non-convex in P . Actually, we can argue that any
regularization method would resulted in a non-convex objective function: since permutation
matrices are the extreme points of a Birkhoff polytope [7, 8], any regularized term would give
a small value at the extreme points and a large value inside the polytope, which corresponds
to a concave function.

Idea 2: round P ∗ to its nearest permutation matrix. This idea is quite intuitive.
Finding a permutation matrix P that is closest to P ∗ can be formulated as the following
optimization problem:

maximize:
∑
i,j

PijP
∗
ij

subject to: P is a permutation matrix. (4)

Note that (4) is indeed the assignment problem: suppose there are n agents and n tasks,
the benefit of assigning agent i to task j is given by P ∗ij, the goal is to assign exactly one
agent (with no overlapping) to each task such that the total benefits are maximized. The
assignment problem can be solved exactly in polynomial time by solving the relaxed LP or
by applying other heuristic algorithms such as the Hungarian algorithm [10].

Although (4) can be exactly solved in polynomial time, we find it hard to derive a good
bound for ||MPg||1 using ||MP ∗g||1, given that P is the optimal solution to (4). This is
because ||MPg||1 is not a linear function of P ; and its value depends on the interaction
between M , P , and g. Therefore, finding a permutation matrix by choosing as many as
possible large-valued entries of P ∗ does not guarantee the closeness between ||MPg||1 and
||MP ∗g||1.

Idea 3: sort g in the same order as P ∗g. The intuition is that since ||MP ∗g||1 is
the optimal value to the relaxed convex program, we may want to rearrange g in such a way
that Pg is most similar to P ∗g. This algorithm gives us an O(

√
n)-approximation factor.

Before we prove this approximation factor, let us fist introduce two lemmas.

Lemma 1. Rearranging g in the same order as P ∗g provides the optimal solution to the
following problem:

maximize: (Pg)T (P ∗g)

subject to: P is a permutation matrix. (5)

Proof. This lemma follows directly from the rearrangement inequality, which says that if
two vectors x ∈ Rn, y ∈ Rn satisfy x1 ≤ ... ≤ xn and y1 ≤ ... ≤ yn, then (Px)Ty ≤ xTy, for
any permutation matrix P . Therefore, rearranging g in the same order as P ∗g will give the
maximum value of (Pg)T (P ∗g) over all permutation matrices.

Lemma 2. For any vector g ∈ Rn and any doubly stochastic matrix Pds, ||Pdsg||2 ≤ ||g||2.

Proof. According to the Birkhoff-von Neumann theorem [7, 8], any doubly stochastic matrix
can be expressed as a convex combination of permutation matrices, i.e., Pds =

∑
i αiPi, where

αi > 0,
∑

i αi = 1, and Pi’s are permutation matrices. Since || · ||2 is a convex function,
applying Jensen’s inequality gives

||Pdsg||2 ≤
∑
i

αi||Pig||2 = ||g||2.



Claim 4. Suppose P is the optimal solution to (5), and let β = (Pg)T (P ∗g), then it gives a(
1 +
√
n ·
√

4
π
(1− β

||g||2 )

)
-approximation algorithm when n approaches infinity.

Remark. Proof of this claim can be found in Appendix B. The dependence on β can be
explained as follows. Since β is defined as the optimal value of (5), using Cauchy-Schwarz
inequality and Lemma 2, we have β ≤ ||Pg||2||P ∗g||2 ≤ ||g||22, where equality is achieved only
when Pg = P ∗g. Therefore, β/||g||22 approaches 1 if P ∗ is close to a permutation matrix;
β/||g||22 approaches 0 if P ∗ is far from any permutation matrix (i.e., P ∗ is close to 1

n
1 ·1T ). In

other words, β/||g||22 characterizes the deviation between the optimal solutions of the original
non-convex program (4) and its convex relaxation.

3 Conclusion

In this project we started with a new and interesting problem: can we recover a signal
(exactly or approximately) from its time-domain permuations, given that the original signal
is sparse in the frequency domain? However, we found that the answer is no because for
any signal there exits at least O(n · φ(n)) permutations that preserves the same level of
sparsity in the frequency domain, where φ(n) is the Euler’s totient function. Since the
original problem is not a valid problem, we then considered another related problem: find an
optimal permutation P of a given vector g such that ||MPg||1 is minimized, where mij is i.i.d.
N(0, 1/n) distributed. We tried three different methods to get an approximated solution.
Although the first two do not work, we showed that the third one give an approximation

factor of O(
√
n ·
√

4
π
(1− β

||g||2 )), where the value of β/||g||22 ∈ [0, 1] depends on M and g, and

is a measure of how close the optimal solution of the relaxed convex optimization program
is to a permutation matrix.
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A Proof of Claim 1

Claim: P̂ ∗ = 1
n
1 · 1T is the optimal solution to (2).

Proof. To prove the above claim, we need to make use of the special structure of the DFT
matrix F . Specifically, two properties of F are used in our proof: 1) the first row of F is 1T ,
i.e., an all-ones vector; 2)

∑
j Fij = 0, for i = 2, 3, ..., n, i.e., the sum of elements in each row

(except the first row) of F equals 0.
Let (FP̂g)i be the i-th element of vector FP̂g, then we can get a lower bound for ||FP̂g||1:

||FP̂g||1 =
∑
i

|(FP̂g)i| ≥ |(FP̂g)1| = |1T P̂ g| = |
∑
i

∑
j

P̂ijgj| = |
∑
j

gj
∑
i

P̂ij| = |
∑
j

gj|.

On the other hand, the above lower bound is achievable if we substitute a special doubly
stochastic matrix P̂ ∗ with P̂ ∗ij = 1

n
for all i and j. In this case, P̂ ∗g = (

∑
k gk/n) · 1. Since

the row sum of F equals 0 for all rows except the first row, we then have

||FP̂ ∗g||1 = |(
∑
k

gk/n)| · ||F · 1||1 = |(
∑
k

gk/n)| · |(
∑
j

F1j)| = |(
∑
k

gk/n)| · n = |
∑
k

gk|.

Therefore, P̂ ∗ = 1
n
1 · 1T is the optimal solution to (2), and the corresponding optimal value

is |
∑

j gj|, i.e., the DC term of signal g.



B Proof of Claim 4

Claim: Suppose P is the optimal solution to (5), and let β = (Pg)T (P ∗g), then it gives a(
1 +
√
n ·
√

4
π
(1− β

||g||2 )

)
-approximation algorithm when n approaches infinity.

Proof. For any real numbers x and y, |x| − |y| ≤ |x+ y| holds, so we have

1

n
(||MPg||1 − ||MP ∗g||1) ≤

1

n
||MPg −MP ∗g||1 =

1

n

∑
i

|
∑
j

mij(Pg − P ∗g)|. (6)

Because mij ∼ N(0, 1/n) is i.i.d. Gaussian distributed,
∑

jmij(Pg − P ∗g) is also Gaussian

distributed with mean 0 and variance σ2 = ||Pg − P ∗g||22/n. Then for any i, |
∑

jmij(Pg −
P ∗g)| follows a half-normal distribution with mean σ

√
2/π and variance σ2(1−2/π). There-

fore, 1
n

∑
i |
∑

jmij(Pg − P ∗g)| is the average of n i.i.d. half-normal distributed random
variables. By the law of large numbers, we have for any ε > 0, with n sufficient large,

P (
1

n

∑
i

|
∑
j

mij(Pg − P ∗g)| ≤ σ
√

2/π + ε) ≥ 1− ε. (7)

Suppose P is the optimal solution to (5), and let β = (Pg)T (P ∗g), then we have

||Pg − P ∗g||22 = ||Pg||22 + ||P ∗g||22 − 2 · (Pg)T (P ∗g) ≤ 2||g||22 − 2 · β, (8)

where the inequality follows from Lemma 2. Substituting (7) and (8) into (6), we get that
as n approaches infinity,

||MPg||1 − ||MP ∗g||1 ≤ nσ
√

2/π =
√
n||Pg − P ∗g||2

√
2/π ≤

√
n
√

4/π(||g||22 − β). (9)

We have two lower bounds for OPT: 1) P ∗ is the optimal solution for the relaxed optimization
program, so OPT ≥ ||MP ∗g||1; 2) in the proof of Claim 3, we have shown that OPT ≥ ||g||2.
Combining the two lower bounds with (9) gives us the desired approximation factor:

||MPg||1 ≤ ||MP ∗g||1+
√
n

√
4

π
(1− β

||g||22
) ·OPT ≤

(
1+
√
n ·

√
4

π
(1− β

||g||2
)

)
·OPT. (10)


