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Abstract 
 

In this project we focus on two collaborative ranking algorithms: Alternating SVM (AltSVM) and 

Factorization Machine (FM). Our project is divided into three main tasks. First, understand AltSVM and 

implement it for the first time, since AltSVM has not been implemented and evaluated before. We also 

need to come up with a method to choose good initial values and stopping criteria for this algorithm. 

Second, understand FM and figure out how to use the FM library (libFM). Third, performance evaluation 

and comparisons based on real world datasets. We show that on the MovieLens 100k dataset, AltSVM 

achieves 72% prediction accuracy using only 30% randomly selected pairwise comparisons in the training 

set. Although FM achieves a higher accuracy (78%), AltSVM has an advantage of using only pairwise 

comparison information instead of actual ratings. We also show that to improve the performance of 

AltSVM, one possible way may be to enhance its ability of handing unbalanced input data.  

 

1. Introduction 
 

Recommendation and ranking system is an important topic in data mining and machine learning field.  

Given incomplete users’ preferences over a list of items, the goal is to infer a complete users’ preference 

ranking for the entire list.  So far there are many ranking techniques developed to improve ranking 

accuracy and efficiency. Typical ranking methods include classic nearest neighbor, matrix factorization, 

mailto:shanshan@utexas.edu
mailto:shuling.guo@yahoo.com
mailto:sc20001@utexas.edu
mailto:sudan@utexas.edu


support vector machines, and factorization machines. These techniques are different from each other in 

terms of the model, the data format, performance scalability, etc. In this project we will focus on two 

collaborative ranking approaches: Alternating SVM (AltSVM) [1] and Factorization machine (FM) [2].  

AltSVM is a heuristic algorithm recently proposed by Prof.  Sujay Sanghavi. Compared to the widely-

studied ranking algorithms that use numeric ratings as the training data, AltSVM takes only pairwise 

preference comparisons of the type “user  prefers item  over item ” as the input data and outputs a 

complete preference ranking for each user. The motivation of using pairwise comparisons instead of 

actual ratings is twofold. First, pairwise comparisons are more widely available. Frequently, the available 

data presented to us would not be explicit ratings, but in the form of comparisons which implicitly indicate 

the user’s preference. For example, book A is purchased when both book A and book B are displayed. A 

particular song is added to the wish list among a collection of popular songs. Second, pairwise 

comparisons are more reliable. Different users have different standards of assigning numeric scores, so 

the same score given by a user who always gives extreme scores can be interpreted differently from 

another who usually gives moderate scores, indicating different degrees of preference. It is worth noting 

that [3] also proposes a ranking algorithm that uses only pairwise comparison information. [3] is 

developed based on the classical Bradley-Terry-Luce model [4] for pairwise preferences of a single user, 

while AltSVM is developed based on a Soft Margin SVM model. A detailed formulation of AltSVM is 

provided in Section 2. This part of work is mainly done by Shanshan Wu. 

FM is a general regression model based on the idea of matrix factorization. Matrix factorization [6] uses 

the dot product to capture the interaction between user and item on latent factors to approximate the 

user’s rating, allowing the prediction of relationship between two categorical variables. Later on, SVD++ 

[7], FPMC [8,10], and timeSVD++ [9] are developed to augment the matrix factorization with additional 

terms and also take the non-categorical variables into account. However, all of these models predict the 

interaction only between users and items and the latent factors are often obtained based on observed 

ratings only due to the sparseness in user-rating matrix. Also, some of the models are specialized for 

specific tasks, so every time the feature space changes, a new specialized model is probably needed to be 

derived. Due to the ability to solve such problems, FM is also examined with libFM in this project to verify 

its prediction accuracy. It provides a regression model that characterizes not only the impact of each 

feature on the target rating but also the impact resulting from the interactions between any two features 

in the feature space such as user and occupation, item and gender. Unlike polynomial regression that 

directly estimates the pairwise interaction parameters, the FM uses a low-rank approximation of the 



parameter matrix by factorizing each into the inner product of two vectors that are easy to be estimated. 

Furthermore, it is actually a generic model that can be transformed to other specialized factorization 

models like matrix factorization and SVD++. The implementation of FM is provided by the software libFM 

[5]. Despite such convenience, two main tasks remain for us to use factorization machine. First, the rank 

k of the matrix obtained by factorizing the parameter matrix is unknown and relies on us to specify. For a 

fixed feature space, small k is likely to underfit the model while large k can lead to overfitting. Second, 

since the model is general, the responsibility is upon us to select the feature space that is most useful in 

predicting rankings. With different combinations of the rank values and the feature space, it is possible to 

generate the best prediction result on a single dataset. A detailed formulation of FM is provided in Section 

3. This part of work is mainly done by Shuling Malloy and Chang Sun. 

We use the MovieLens 100k dataset to evaluate the performance for both algorithms. It contains “100,000 

ratings (1-5) from 943 users on 1682 movies” with 19 movie genres. There are at least 20 ratings per user. 

Besides the rating information, it also includes the information of timestamp, gender, occupation and age. 

Since AltSVM and FM require different forms of input data, a detailed explanation of how we pre-process 

the MovieLens dataset for each algorithm is provided in Section 2 and Section 3, respectively. 

 

2. Alternating SVM (AltSVM) 
 

AltSVM is a heuristic algorithm recently proposed by Prof.  Sujay Sanghavi. It takes pairwise preference 

comparisons as the input data and outputs a complete preference ranking of each user. Our goal is to 

understand this algorithm, implement it, and evaluate its performance.  

To achieve our goal, we have to face two challenges. First, AltSVM is a new algorithm that has not been 

implemented or evaluated before, so we do not have a baseline solution that can serve as a reference. 

Furthermore, AltSVM is not a complete algorithm with open questions such as how to choose good initial 

values and good stopping criterion. As a result, we need to come up with different methods and take the 

approach of trial and error.  

This part of work is mainly done by Shanshan Wu. Chang Sun helps pre-process the MovieLens 100k data. 

Specifically, Chang transforms the data from actual ratings to pairwise comparisons. 

 



2.1   Setting and Algorithm 

Setting and notations. We consider the following problem. For  users and  items, suppose there is an 

underlying low-rank rating matrix  with rank . Each entry  is the rating of item  by user . 

We observe  pairwise comparisons of the type “user  prefers item  over item ”. These pairwise 

comparison information is represented by a set of triples  such that  

indicates . Our goal is to recover the rankings of each user, i.e., find an approximated  such 

that  for every user . 

Algorithm and interpretation. Under the low-rank assumption, we can decompose  as , where 

 and . The -th row of can be interpreted as  attributes or features that describe 

item . Similarly, user  is represented by the -th row of . Instead of solving  directly, AltSVM uses the 

idea of alternating optimization: fix , optimize  (User’s Problem), then fix , optimize  (Item’s 

Problem), and iterate until certain stopping criterion is reached.  

The User’s Problem is formulated in (1). Since the pairwise comparisons are given for each user, we can 

optimize each row of  independently. Specifically, the -th row  is optimized using , the pairwise 

comparisons associated with user . 

  (1) 

The above optimization problem is similar to an SVM problem: same objective functions but with different 

constraints. Recall that the SVM algorithm finds a maximum-margin hyperplane that separates two classes. 

Its constraint is given by , where  is the class label (“+1” or “-1”) and  denotes 

the intersection. Compared to the SVM algorithm, we can interpret (1) as finding the maximum-margin 



hyperplane for one-class data with the constraint that this hyperplane must pass through the origin, as 

shown in Figure 1.  

 

Figure 1: A comparison between the User’s Problem (left) and the SVM algorithm (right). 

The Item’s Problem is given in (2). Unlike the User’s Problem, where users are optimized independently, 

the items are all coupled and hence they have to be optimized together using all the pairwise comparisons. 

The Item’s Problem can be interpreted in the same way as the User’s Problem, except that all the math 

operations are between matrices instead of vectors.   

  (2) 

2.2 Implementation Issues for Large Datasets 

In this section we give a detailed description of the three main issues that we have encountered when 

implementing AltSVM in Matlab. As mentioned previously, this is the first time that AltSVM is 

implemented. Although our final implementation is still not fast enough, it is yet the best implementation 

we can get so far.  

Quadratic programs. The User’s Problem (1) and Item’s Problem (2) are two quadratic optimization 

programs. To implement them, we try three methods, and each time we look for an optimization solver 

that is more efficient in solving problems of the specific form as (1) and (2). Table 1 lists the time needed 

to run a simple case and the main issues for each method.  



We first try CVX, but it is slow and suffers the out-of-memory issue when we increase the rank or the 

number of comparisons in the training data. This is because CVX is a general optimization solver. It uses 

interior point methods to solve the optimization program, making it quite slow solving specific quadratic 

problems in our case. Next, we try Quadprog, which is a Matlab toolbox specifically designed for solving 

quadratic programs. It suffers the same problem as CVX, that is, slow and memory exhausting.  

To deal with the out-of-memory issue, we take a close look at the special structures of the optimization 

problems (1) and (2). On one hand, we find that problem (2) is the bottleneck. Unlike problem (1), which 

is solved independently for each user, program (2) finds the optimal  using all the pairwise information 

in . For  users and  items, if  pairwise comparisons per user are used, with rank  approximation, 

problem (2) solves for  variables under  inequality constraints. Besides, even writing down 

all the s requires  memory, which explains why the memory issue becomes so severe for 

large dataset. On the other hand, we find that although each  is an -by-  matrix, it is quite sparse 

with only  non-zero elements. This indicates that instead of storing  directly for each constraint, a 

more efficient method would be to re-formulate the constraint so that only the non-zero elements of 

each  needs to be stored. To achieve this goal, we formulate the constraints as a sum of hinge loss 

functions and then perform gradient descent to get the optimal solution. Similar to SVM, Problem (2) can 

be formulated as an unconstrained quadratic program:  

  (3) 

Let , then the subgradient of  is given by  

  (4) 

As shown in (4), calculating the subgradient of a hinge loss function needs only the non-zero elements of 

, which hence dramatically decreases the memory demand. Similar to Problem (2), we also formulate 

the constraints of Problem (1) as hinge loss functions and then apply gradient descent method.  

Two sets of parameters need to be turned for the algorithm. The first set includes the penalty variables  

and . To determine a fairly good choice, we hold out a validation set, evaluate various combinations of 

 and  for several cases. We find that the results to be fairly robust to the choices of  and . Considering 

the time limit, we decide to use  and  in our experiments. The second set of parameters are 



the step sizes for the gradient descent method. After some attempts, we decide to use backtrack line 

search with parameters  and .  

Table 1: A comparison of three optimization solvers. 

Methods Time needed to run a simple case on the 
MovieLens 100k dataset (use rank 2 and 20 
pairwise comparisons per user) 

Main problem 

CVX  5.2 hours Quite slow; out of memory if we 
use more than 25 comparisons per 
user even for a simple rank 2 case. 

Quadprog  Out-of-memory for this case Similar problem to CVX. 

Hinge loss and 
gradient descent 
with backtracking 
line search 

32 seconds Slow when we increase the rank 
value or the number of pairwise 
comparisons; need to tune step 
size for gradient descent. 

 

Performance metric. The MovieLens dataset contains actual ratings, so we first hold out 20% of the 

ratings as the test set and transform the rest 80% ratings into pairwise comparisons. Motivated by the 

“Kendall tau distance”, we evaluate the performance by calculating the proportion of pairwise 

comparisons that we correctly infer user’s preference. In other words, let  be the set of all possible 

pairwise comparisons in the test set, then the prediction accuracy is measured as 

  

Since the actual ratings are given in discrete values from one to five, we are also interested in the 

algorithm’s performance on inferring strong preferences, i.e., pairs with a rating difference greater than 

one. In this case, we measure the above metric and call it the “restricted accuracy”.  

Initial values and stopping criterion. A naive way is to initialize  and  randomly. However, this random 

initialization may result in a slow convergence rate. In our experiments, we try a more sophisticated 

approach: use the training data to initialize  and  so that the resulting low-rank matrix  

satisfies as many as possible the known pairwise comparisons. Here is how we find the initial values: start 

with an all-zeros matrix , for every pairwise comparisons in the training data , 

add +1 to the entry  and -1 to the entry . The initial  and  are chosen as the rank-  factorization 

of . The two initialization methods are compared in Figure 2a. We see that the more sophisticated 

initialization method speeds up the algorithm. 



AltSVM is a heuristic algorithm that optimizes  and  alternatively, so an intuitive stopping criterion is 

to stop running the algorithm when  converges. In other words, the algorithm is stopped when 

the values of  between the current round and the next round does not change too much. Mathematically, 

we evaluate the difference of  between two consecutive rounds as , and stops the algorithm when 

. In Figure 2b we plot  and the achieved accuracy versus the number of times we 

optimize  and . We find that a smaller  does not always correspond to a better performance. Besides, 

it is hard to tune  for every case: a small  would require more training time while a large  may not give 

the best performance. Therefore, in our experiments, a different stopping criterion is used: for each round, 

we evaluate the accuracy on the training data and stop executing the algorithm when the accuracy starts 

to decrease.  

  

(a)                                                                                           (b) 

Figure 2: (a) A comparison of two initialization methods. (b) Relation between  and the achieved 

accuracy. 

2.3 Experiments and Results 

We evaluate the performance based on two datasets: artificially generated data and real-world data. The 

motivation behind the synthetic experiment is as follows. Because AltSVM is formulated based on the 

assumption that the underlying rating matrix has rank , a natural question would be: if this assumption 

is true, can AltSVM correctly infer all user’s preferences? To answer this question, we need to use artificial 

data, since it is difficult to know the actual rank of the underlying rating matrix associated with a real-

would dataset.  



Synthetic experiments. We consider a simple case with 100 users and 100 items. The rank-  rating matrix 

 is generated by assigning i.i.d. Gaussian distributed values to the entries of   and . We hold 

out 20% of the ratings as the test set. Two cases are considered:  and .  

For the first case, we run AltSVM with rank 2 and 6 using randomly selected pairwise comparisons in the 

training set. As shown in Figure 3a, 90% accuracy is achieved on the test data using only 30 pairwise 

comparisons per user, which is a quite small number since each user has approximately 3k pairwise 

comparisons in total. On the other hand, since we know the actual rank is 2, using rank 6 in AltSVM would 

overfit the data, which is why there is a slight increase in the training accuracy in Figure 3a.  

For the second case, the actual data has rank 20, while we run AltSVM with rank 5 and 15, which would 

underfit the data. Compared to the first case, this situation may be a more realistic model of the real-

world data. As shown in Figure 3b, given the same number of pairwise comparisons per user, modelling 

data with a higher rank achieves a better accuracy on both the training and test data. Furthermore, as the 

number of comparisons used for training increases to the maximum value (about 3k), the test accuracy 

also reaches its maximum: 85% for rank 15 and 68% for rank 5. We also observe that the training accuracy 

decreases as the number of comparisons per user increases. This is because with more pairwise 

comparisons in the training set, find an approximated  that satisfies all the comparisons becomes more 

difficult. As an extreme case, if only one pairwise comparison is given for each user, then it is very easy to 

find an  that satisfies all the given comparisons. In fact, after the initialization process, the initial  can 

achieve 100% accuracy on the training data. 

  

(a) 



 

(b) 

Figure 3: Simulations using artificially generated rating matrix with actual rank 2 (a) and rank 20 (b). 

Real-world data. We use the MovieLens dataset to evaluate the performance. It contains 100k ratings 

from 943 users on 1682 movies. The ratings are integers from one to five, with at least 20 ratings per user. 

We hold out 20% of the ratings as test set. When converting ratings into pairwise comparisons, we 

consider pairs with different ratings and ignore pairs if their ratings are equal. We also evaluate the 

accuracy on the “restricted” pairs whose ratings differ by two or more. 

According to the synthetic experiments, two parameters would affect the prediction accuracy: the rank 

number used to model the underlying rating matrix, and the number of pairwise comparisons used as the 

training data. In Figure 4 we evaluate the accuracy versus rank using 50 and 3000 randomly selected 

pairwise comparisons per user. We observe a nice underfit-overfit tradeoff for both cases: a small rank 

would underfit the data, resulting in a low accuracy both on the training and test data; as rank increases, 

the model complexity also increases, hence a large rank tends to overfit the data, resulting in a high 

accuracy on the training data and a low accuracy on the test data. One way to deal with overfitting may 

be to increase the size of the training data, i.e., increase the number of pairwise comparisons. This actually 

does not work for our case (see Fig. 6 and the detailed explanation). Nevertheless, we observe from Figure 

4 that for a small training size, a rank number smaller than 10 would be sufficient to model the MovieLens 

dataset. 



   

Figure 4: Accuracy versus rank using 50 (left) and 3000 (right) pairwise comparisons per user. 

 

In Figure 5 we plot the prediction accuracy versus the number of randomly selected pairwise comparisons 

per user. The rank number is tuned from 2 to 10. In other words, given a training set, we fit the data with 

a rank from 2 to 10 and report the best performance. We also evaluate the restricted accuracy using pairs 

indicating strong preferences in the test data, i.e., pairs that have a rating difference greater than one. 

The performance of AltSVM is compared to that of a standard matrix completion algorithm. For each 

pairwise comparison, the matrix completion algorithm takes the difference between their actual ratings 

as the training data. The prediction accuracy achieved by matrix completion on the same dataset is 

borrowed from [3]. As shown in Figure 5, AltSVM performs quite well: although it only uses the sign of 

each pairwise comparison (i.e., information that whether user  prefers item  over ), it achieves a 

better prediction accuracy than the case when we know the actual rating difference.  

 

Figure 5: Prediction accuracy for different number of pairwise comparisons per user. 



As shown in Figure 5, AltSVM can achieve a prediction accuracy of 68% on the test data (75% accuracy on 

the restricted test data). We also observe that the prediction accuracy increases when we use more 

pairwise comparisons. Given this promising trend, we are then interested evaluating the performance 

with a larger size of training data. A case of large-size training data is shown in Figure 4b, in which an 

accuracy of 72% (80% for the restricted case) is achieved when we use rank 5 and 3000 randomly selected 

pairwise comparisons per user. Then a natural question would be if we use all the available pairwise 

comparisons, can we achieve a better prediction accuracy? The answer is, unfortunately, no. In Figure 6 

we use all the pairwise comparisons to train the model with different ranks. As shown in Figure 6, the best 

prediction accuracy is 68% on the test data, which is lower than the case we use only 3000 pairwise 

comparisons per user. 

 

Figure 6: Accuracy achieved when all the pairwise comparisons in the training set are used. 

There are two possible reasons why using all the available pairwise comparisons does not improve the 

prediction accuracy. First, more pairwise comparisons do not necessarily mean more information. As an 

simple example,   and  already indicates that user  prefers item  over , so adding 

one more pair of   will not increase the amount of information that we already had. Second, the 

available pairwise comparisons are quite unbalanced from user to user. For the MovieLens 100k dataset, 

after picking 80% of the ratings as the training set and converting them into pairwise comparisons, we get 

more than 4 million pairs in total. However, they are quite unbalanced for each user: user 13 has about 

105k pairwise comparisons while user 849 has only 32 pairs (note that although each user has rated at 

least 20 movies, but we ignore equal ratings when converting them into pairwise comparisons). When 

running AltSVM, all the pairwise comparisons are treated equally in the User’s Problem and Item’s 

Problem. Therefore, by increasing the number of pairwise comparisons per user in the training set, we 

are actually giving a larger weight on users with more ratings, which possibly causes a performance 



degradation. Note that for a real-world dataset, this unbalance characteristic always exists. However, 

compared to using the actual ratings to infer user’s preferences, this unbalance problem becomes severer 

when the ratings are converted to pairs (e.g., 105k versus 32).  

3. Factorization Machine (FM) 
 

This part of work is mainly done by Shuling Malloy and Chang Sun. Dan Su is involved in some of the 

discussions. 

3.1 Algorithms 

FM is a general regression model that can incorporate any real-valued features. Its model contains three 

parts: the constant term, also known as the global mean; the input variables with associated weights, 

which are exactly the same as that in a linear regression model; the pairwise interactions of all input 

variables. A second-order FM model can be constructed as follows: 

�̂�(𝑥) = 𝑤0 +∑𝑤𝑖𝑥𝑖 +∑ ∑ ⟨𝑣𝑖, 𝑣𝑗⟩𝑥𝑖𝑥𝑗
𝑗=𝑖+1𝑖=1𝑖=1

 

where 𝑥𝑖 refers to each input variable, 𝑥𝑖𝑥𝑗 represent the interaction between any two variables. 

The important difference with polynomial regression is that the pairwise interaction parameter is not 

directly estimated, but factorized into a dot product  ⟨𝑣𝑖, 𝑣𝑗⟩ = ∑ 𝑣𝑖,𝑓 ∗ 𝑣𝑗,𝑓
𝑘
𝑓=1 , where k is the 

dimensionality of the factorized matrix V. Thus, the interaction parameter matrix can be represented as 

V ∗ 𝑉𝑡 if k is sufficiently large. Such way of factorization is one of the biggest novelties of FM since the 

parameter of the interaction is usually hard to estimate, especially in higher-order variable interaction 

circumstances. 

The algorithm can be proved to be computed in linear time if we rewrite it as 

�̂�(𝑥) = 𝑤0 +∑𝑤𝑗𝑥𝑗 +
1

2
∑[(∑𝑣𝑗,𝑓𝑥𝑗

𝑝

𝑗=1

)

2

−∑𝑣𝑗,𝑓
2𝑥𝑗

2

𝑝

𝑗=1

𝑘

𝑓=1

𝑝

𝑗=1

 

As can be seen, the number of parameters of the model is 1 + p + kp, where p is the number of input 

variables. So the total number of parameters needed to estimate is linear to both number of variables and 

k. Thus the complexity is O(kp) instead of O(k𝑝2) in polynomial model without the factorization.  



To obtain the ultimate rating, there are three groups of parameters needed to estimate: 𝑤0 ∈ ℝ, 𝐰 ∈ ℝ𝑝 

and 𝐕 ∈ ℝ𝑝∗𝑘. The FM algorithm aims to estimate such parameters using the following steps: 

a. Construct the feature space; 

b. Choose optimization function and regularization method; 

c. Choose learning algorithm to infer over FM model parameters. 

3.1.1 Feature space construction 

FM constructs the feature space differently from the typical factorization models such as SVM. In a feature 

matrix, both the users and items can be regarded as features. Each row in the matrix represents a feature 

vector indicating that a particular user rated a particular item with specific background information for 

features such as gender, zip code and rating time point. Each column represents an input variable. 

 

Figure 7: An example of the feature space of FM (this plot is borrowed from [2]). Input variables are 

grouped into User, Movie, Other Movies Rated (normalized so that they sum up to 1), Time and Last Movie 

Rated. The first row can be read as: user A rated TI movie to score 5 at time 13 with three movies rated in 

total and TI as the first rated movie. 

 

3.1.2 Optimization function and regularization method 

The optimization of model parameters begins with the loss function which aims to minimize the total loss 

over the observed data,  

OPT(S) = argmin
Θ

∑ 𝑙(
(𝒙,𝑦∈𝑆)

�̂�(𝑥|Θ), 𝑦) 

where 𝒙  is the input variables,  Θ  is the model parameters required to estimate and  �̂�(𝑥|Θ)  is the 

estimated rating and y is the observed rating. 



Depending on the task, three kinds of loss functions are used by Rendle [2]. For regression,  

𝑙𝑙𝑠(𝑦ℎ𝑎𝑡(𝑥), 𝑦) = (𝑦 − 𝑦ℎ𝑎𝑡(𝑥))2 

 

For binary classification (y ∈ {−1,1}), 

𝑙𝐶(𝑦ℎ𝑎𝑡(𝑥), 𝑦) = ln(𝑒𝑦ℎ𝑎𝑡(𝑥)∗𝑦 + 1) − 𝑦ℎ𝑎𝑡(𝑥) ∗ 𝑦 

For ranking, a pairwise classification loss is used based on Bayesian Personalized Ranking (BPR-OPT) [2], 

𝑙𝑅(𝑦ℎ𝑎𝑡(𝑥), 𝑥(1), 𝑥(2)) = ∏ 𝜎(𝑦ℎ𝑎𝑡(𝑥), 𝑥(1), 𝑥(2))𝑃(Θ)

(𝑥(1),𝑥(2))∈𝑆

 

where 𝜎 is the logit link 𝜎(𝑥) =
1

1+𝑒−𝑥
 and 𝑃(Θ) is the prior of model parameters. 𝑥(1), 𝑥(2) are pairs of 

instance vectors (𝑥(1), 𝑥(2)) ∈ 𝑆. 

To avoid the overfitting problem caused by fitting the model with large k, L2 regularization is applied. 

OPTREG(S, λ) = argmin
Θ

(∑ 𝑙((𝒙,𝑦∈𝑆) �̂�(𝑥|Θ), 𝑦) + ∑ 𝜆𝜃𝜃
2

𝜃∈Θ ) 

Note that since we have three kinds of parameters in the model, different 𝜆θ should be used for different 

parts of the model. Also, parameters are grouped in libFM, which means each feature has its own 

parameter for each of three kinds of parameters. Having a lot of 𝜆θ can be good or bad. On the one hand, 

the prediction quality may highly depend on the choices of 𝜆θ in the certain learning algorithm such as 

SGD, so setting different 𝜆θ  for different parts of model and features could enhance the prediction 

accuracy. On the other hand, with many parameters already in the model, it may take a long time for the 

learning algorithm to search for the best 𝜆θ with cross-validation. 

Despite a large number of parameters and 𝜆θ to estimate, one advantage of FM is that the gradient for 

each parameter when direct optimizing the loss function is very easy to compute. For example, if the 

regression loss function is used, then 

h(θ) =
𝜕(�̂�(𝑥|Θ), 𝑦)

𝜕θ

{
 
 

 
 2(�̂�(𝑥|Θ) − 𝑦) ∗ 1 + 2𝜆0𝑤0                                                         𝑖𝑓 θ is 𝑤0
2(�̂�(𝑥|Θ) − 𝑦)𝑥𝑖 + 2𝜆𝜋(𝑖)

𝑤 𝑤𝑖                                                       𝑖𝑓 θ is 𝑤𝑖

2(�̂�(𝑥|Θ) − 𝑦)(𝑥𝑖∑ 𝑣𝑗,𝑓𝑥𝑗 − 𝑣𝑗,𝑓𝑥𝑖
2 ) + 2𝜆𝑓,𝜋(𝑖)

𝑣 𝑣𝑗,𝑓        𝑖𝑓 θ is 𝑣𝑖,𝑓
𝑛

𝑗=1

 

where 𝜆0 is the regularization parameter for the constant part, 𝜆𝜋(𝑖)
𝑤  is for each single input variable and 

𝜆𝑓,𝜋(𝑖)
𝑣  is for factorized vector element 



3.1.3 Learning algorithms 

Three learning algorithms are proposed for FM: Bayesian posterior estimate, Stochastic Gradient Descent 

(SGD) and Alternating Least-Squares. For this project, we only focus on the first two learning algorithms 

and choose the first one in practice to optimize the parameters in different FM models.  

Bayesian posterior estimate. Basically, Bayesian posterior estimate constructs the posterior probability 

of parameters given observed data. Since the parameters are hard to sample from the full posterior 

distribution, MCMC algorithm is used with Gibbs sampling to derive the converged conditional distribution 

of each parameter, which in essence is the same as optimizing the loss function with gradients.  

P(θ|X, y) ∝ P(y|X, θ)P(θ) 

where θ is all parameters needed to estimate in the model.  

Each parameter in the model follows a normal distribution with variance to be the regularization 

parameter corresponding to the feature. This makes sense because the regularization parameter controls 

the flexibility of model parameter values when observed data changes. So 𝑤0  follows  N (μ0,
1

λ0
) , 

𝑤𝑗 follows  N (𝜇𝜋(𝑗)
𝑤 ,

1

𝜆𝜋(𝑗)
𝑤 ) , and 𝑣𝑗,𝑓 follows  N (𝜇𝑓,𝜋(𝑗)

𝑣 ,
1

𝜆𝑓,𝜋(𝑗)
𝑣 ) . Then hyperpriors are set 

for  𝜇𝜋(𝑗)
𝑤 ~𝑁(𝜇0, 𝛾0

𝜆𝜋(𝑗)
𝑤

) , 𝜆𝜋(𝑗)
𝑤 ~Γ(𝛼𝜆, 𝛽𝜆) , 𝜇𝑓,𝜋(𝑗)

𝑣 ~𝑁(𝜇0, 𝛾0
𝜆𝑓,𝜋(𝑗)
𝑣

) , and 𝜆𝑓,𝜋(𝑗)
𝑣 ~Γ(𝛼𝜆, 𝛽𝜆) . Finally, the 

prior is set on y, y~N(�̂�(𝑥|Θ),
1

𝛼
)  where α  follows a gamma distribution Γ(𝛼0, 𝛽0) . The values of 

hyperparameters for 𝑤0 , 𝑤𝑗  and 𝑣𝑗,𝑓  can be found by sampling from their corresponding conditional 

posterior distributions, saving time for searching the best regularization parameters. Even though there 

are numerous priors, Rendle believes that these priors have little effect on hyperparameters values [5]. 

One of the reasons may be that the proportion of conditional posterior mean that is explained by prior 

mean is very small compared with that explained by maximum likelihood estimate when the number of 

input variables is quite large. 

Stochastic Gradient Descent. SGD is popular in optimizing the loss function in various forms since it has 

low computational and storage complexity. Due to the easy computation of gradients of FM loss function, 

the algorithm should run fast. Basic algorithm is: 

θ = θ − η(
𝜕(�̂�(𝑥|Θ), 𝑦)

𝜕θ
+ 2𝜆θ𝜃) 



There are three kinds of hyperparameters to estimate in order to run SGD. First, the learning rate η has 

to be set suitably since the convergence highly depends on η. Second, regularization parameters are 

required to estimate through grid search or cross-validation. However, Rendle erases the group difference 

to make 𝜆θ the same for all features. Such revision effectively reduces the searching time for best 𝜆θ, but 

may increases the bias for some parameter estimates if the best 𝜆θ for all features is larger than the best 

one with group difference or increases the variance for others if the best 𝜆θ for all features is smaller than 

the best one with group difference. That is probably one of the reasons why the ranking result by using 

SGD is not as good as that by using MCMC in Rendle’s experiment [5]. The third one is the parameter for 

the factorized interaction (V). Initialized values are sampled from N(0, σ) where σ is small. 

Based on Rendle’s prediction error rate with different algorithms [5], in our project, SGD algorithm for FM 

is studied but not used. Bayesian posterior estimate with MCMC is used instead to obtain the best 

prediction result and compare it with that obtained by AltSVM. 

3.2 Experiment and Results 

3.2.1 Data preprocessing 

In the MovieLens 100k dataset, the input features we can select are: UserID, MovieID, Movie Genre, Age, 

Gender, Occupation and Zip code. In this project, Moive Genre is not used. All demographic information 

about users in the MovieLens 100k is transformed to numerical values instead of strings. Gender is coded 

as 0 and 1 for male and female and occupation is coded from 0 to 19. All features seem to have no outliers 

and wrong records except the Zip code. Most of the values in Zip code are four or five digit number, but 

some are combinations of letters and numbers like “T8H1N” and “V3N4P”, which obviously don’t look like 

zip code. To make them in the same form as others, these values are coded as “00000”.  

Then, the movie dataset is randomly divided into training data and test data by the ratio of 8:2, so 

theoretically, each user should have 80% of rankings in the training dataset and 20% of rankings in the 

test dataset. 

Eight different feature spaces are selected from MovieLens 100k to build FM models in this project: 

Table 2: Different features used to build FM models 

Selected features 

User + Movie 



User + Movie + Age 

User + Movie + Gender 

User + Movie + Occupation 

User + Movie + Zip code 

User + Movie + Gender + Occupation 

User + Movie + Age + Gender + Occupation 

User + Movie + Age + Gender + Occupation + Zip code 

 

3.2.2 Evaluation metric 

The root mean squared error (RMSE) is used to evaluate each FM model: 

RMSE = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

 

3.2.3 Experiment procedure 

In this project, MCMC algorithm is used on MovieLens 100k. There are two hyperparameters needed to 

tune in order to obtain the best prediction result. The standard deviation for factorized interaction V has 

to be initialized in order to generate the Gibbs sampling. Since the initial value is trivial to the conditional 

posterior distribution after the convergence, usually small value is used to speed up the convergence [5]. 

The k value, that is, the dimensionality of the factorized matrix V has to be determined. If k is set too small, 

there will be a high bias between V ∗ Vt and the interaction parameter matrix while if k is too large, the 

model tends to be overfitted.  

For each of the eight FM models with different feature space, the initialized standard deviation is 

determined first by selecting the optimal one from different values which will result in the fastest 

convergence, with k kept constant as the default value in LibFM. We use the training and test RMSE after 

the first 100 iteration as a measure of converging rate. A smaller RMSE indicate a faster convergence. 

Once the optimal value of initialized standard deviation is determined, it is set constant for all the 

following tuning of the factorization dimensionality. Different k values are tried on each model and for 

each k, MCMC runs for 2000 iterations. The corresponding RMSE is recorded with each k. By observing 



the RMSE of both training and test data, the optimal dimensionality for FM models is selected as the one 

which leads to the smallest test RMSE.  

After all eight models are fitted with their respective optimal initialized standard deviation and k values, 

their respective smallest test RMSE can also be generated. The performances of eight models are 

compared based on the test RMSE so that the feature space that is most useful to predict the movie rating 

could arise.  

3.4.4 Main Results 

We first use UserID and MovieID as the predictor variables in the FM model. Table 3 shows all initialized 

standard deviation we have selected and the corresponding training and test RMSE. Figure 8 shows 

relationship between selected initialization values and corresponding RMSE. 

Table 3: Initialized standard deviation and the corresponding RMSE. 

Dimensionality 

(k) 

Initialized 

standard 

deviation 

Training 

RMSE 

Test  

RMSE  

8 0.01 0.84211 0.939953 

8 0.1 0.82 0.92 

8 0.5 0.796 0.9 

8 1 0.795 0.9 

8 2 0.796 0.9 

8 3 0.803575 0.929342 

8 5 0.830218 0.967751 

8 8 0.908367 1.02205 

8 10 0.9086 1.04 

 



 

Figure 8: Selected initialization values and the corresponding RMSE. 

As can be seen from above, the training and test RMSE have similar trend when the initialization value 

increases from 0.01 to 10. The training RMSE goes down quickly to 0.795 as the smallest when initialization 

value is 1. And the test RMSE decreases to 0.9 as initialization value is 0.5, 1 and 2, then goes up quickly. 

Combining the training and test RMSE results, we set the initial standard deviation to be 1. 

Table 4 shows all k values we have tried and the corresponding training and test RMSE. Figure 9 shows 

the changing trend of RMSE with the increase of dimensionality k.  

Table 4: Different dimensionality of factorized interaction and the corresponding RMSE. 

Dimensionality 

(k) 

Initialized 

standard 

deviation 

Training 

RMSE 

Test  

RMSE  

0 1 0.923743 0.949935 

1 1 0.885847 0.923279 

2 1 0.867476 0.916586 

4 1 0.836922 0.910053 

8 1 0.795 0.9059 

10 1 0.77628 0.9049 

12 1 0.764545 0.907677 

16 1 0.735331 0.909 

32 1 0.653082 0.911651 
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48 1 0.585849 0.915848 

64 1 0.52507 0.919282 

92 1 0.449133 0.925375 

128 1 0.370692 0.924 

 

 

Figure 9: RMSE influenced by the number of dimensionality. 

 

When the dimensionality of factorization increases, the training RMSE goes down gradually. The test 

RMSE reaches 0.9049 when k is 10. As the dimensionality increases from 10 to 128, it goes up slightly since 

the model becomes more complex and is prone to be overfitted. So the best dimensionality is 10 for FM 

model with only UserID and MoiveID and the corresponding ranking accuracy is 78%. 

For each of the other seven FM models, we first find the optimal initialization of standard deviation and 

then tune the factorization dimensionality k. So each model is tuned to have the smallest RMSE with a 

specific optimal factorization dimensionality. The performances of FM models with different predictor 

variables are compared in the Table 5 and Figure 10.  

Table 5: Factorization dimensionality and the prediction error of FM using different predictor. 

 

0.35	

0.4	

0.45	

0.5	

0.55	

0.6	

0.65	

0.7	

0.75	

0.8	

0.85	

0.9	

0.95	

0	 20	 40	 60	 80	 100	 120	 140	

R
M
SE
	

Dimensionality	(k)	

Dimensionality	

Train	

Test	



 

 

 

Figure 10: RMSE influenced by different feature sets. 

 

Adding one or more predictor variables was expected to improve model performance. However, the result 

shows that there is little difference in test RMSE in models without zip code, indicating that adding more 

features doesn’t necessarily improved the ranking prediction. The test RMSE for these models is about 

0.9. When zip code is included in two models, both models have substantially high test RMSE, which 

indicates that zip code is not a useful predictor feature.  

Despite that there are two hyperparameters needed to tune, the hyperparameter k is the only parameter 

that decides the prediction result. As we can see from the result above, even though different number of 

features is added to the model, the optimal k that leads to the smallest RMSE generally ranges from 10 to 

20 without a certain increasing or decreasing pattern, which means the interaction parameter matrix can 

be approximated very well by the factorized matrix V with a 10 to 20 rank, regardless of how many 

features are added into the model. However, it’s interesting to find that certain features may have an 

impact on the optimal dimensionality. Age is likely to increase the optimal k since the model with UserID, 

Predictor dimensionality	(k) RMSE

User,	Movie 10 0.9018

User,	Movie,	Age	 20 0.8984

User,	Movie,	Gender 15 0.9003

User,	Movie,	Occupation 16 0.8996

User,	Movie,	Zipcode 20 0.9654

User,	Movie,	Gender,	Occupation 15 0.9001

User,	Movie,	Age,	Gender,	Occupation 20 0.9006

User,	Movie,	Age,	Gender,	Occup,	Zipcode 20 1.3397



MovieID and Age has higher k value than the model with either Gender or Occupation besides the UserID 

and MovieID. Still, more proof is needed to verify the relationship between the features and the 

dimension of the factorized interaction. 

4. A comparison of AltSVM and FM 
 

Table 6 lists the main strengths and weaknesses we have found for AltSVM and FM. One of the major 

differences between the two algorithms is that AltSVM uses only pairwise comparison information as the 

training data while FM needs to use the actual ratings. This difference can correspond to a strength and a 

weakness for either algorithm. On one hand, pairwise comparisons are more reliable and more widely 

available than actual ratings, so designing algorithm based on this special input data is quite crucial for 

learning user’s preferences. On the other hand, since AltSVM works only with data in the form of pairwise 

comparisons, this would restrict its application to other scenarios (e.g., when we have different features). 

In contrast, FM provides a general regression model which can incorporate any real-valued features. In 

terms of performance, AltSVM performs quite well using only limited number of pairwise comparisons 

per user. As shown in Section 2.3, AltSVM achieves a higher prediction accuracy than that of matrix 

completion. The best prediction accuracy is 72%, achieved by using at most 3k randomly selected pairwise 

comparisons per user. This corresponds to only 30% of the total pairwise comparisons in the training set. 

However, the performance of AltSVM degrades when we use more pairwise comparisons. Possible 

reasons have been analyzed thoroughly in Section 2.3. In particular, this performance degradation 

indicates that AltSVM is not robust in handling unbalanced data. In contrast, FM achieves a higher 

prediction accuracy (78%) than AltSVM (72%) on the same MovieLens dataset. This result is not surprising 

since FM has an advantage over AltSVM because it sees the actual ratings and hence has more information.  

Table 6: A comparison of AltSVM and FM. 

Algorithms Strength Weakness 

AltSVM 1) Uses only pairwise comparison 
information as the training data. 

2) Performs quite well with a small 
number of pairwise comparisons per 
user (even achieves better performance 
than matrix completion). 

1) Performs relatively bad when we use 
more pairwise comparisons (possible 
reason is that the model is not robust 
when dealing with unbalanced data). 

2) Works only for data in the form of 
pairwise comparisons. 

FM 1) Provides a general regression model. 
2) Performs quite well in terms of 

prediction accuracy and RMSE. 

Needs to use real-valued features (e.g., 
actual ratings) as the training data. 



 

5. Conclusion 
 

In this project we have explored two collaborative ranking algorithms: Alternating SVM (AltSVM) and 

factorization machine (FM). For FM, our main focus was to understand its model and figure out how to 

use libFM. We have demonstrated its strong prediction ability by applying FM on the MovieLens 100k 

dataset. In addition to the movie ratings, we also investigated the impact of features such as age, gender, 

occupation, etc. Unlike FM, whose implementation is already given by the libFM package, AltSVM is a new 

algorithm that has not been implemented or evaluated before. To implement AltSVM in Matlab, we have 

tried three optimization solvers, two initialization methods, and two stopping criteria. Our final 

implementation used the most efficient combination among them. Specifically, we solved the 

optimization programs by formulating the constraints as hinge loss functions and then apply gradient 

descent method with backtracking line search. The performance of AltSVM was evaluated on the synthetic 

dataset and the MovieLens 100k dataset. For both datasets we investigated the performance variation 

with respect to two parameters: rank and the number of pairwise comparisons per user. Strengths and 

Weaknesses of the two algorithms were analyzed thoroughly in Section 4. Although the prediction 

accuracy achieved by AltSVM (72%) is lower than that of FM (78%), we still think that AltSVM is a promising 

algorithm, especially for the case when actual ratings are not available. One key finding of AltSVM was 

that its performance did not improve even when we used all the pairwise comparisons in the training set. 

As analyzed in Section 2.3, one possible reason is that AltSVM is not robust in handling unbalanced data. 

This may be a future research direction that would further improve the performance of AltSVM. 
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