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Abstract

Kernel based algorithms suffer from quadratic runtime for computing kernel matri-

ces, which makes these algorithms hard to scale in the large scale setting. One common

way of avoiding quadratic runtime is to compute a sketch matrix and use it in place of

the original kernel matrix. In this survey we compare two categories of pass-efficient

randomized algorithms for sketching kernel matrices: random features method and

Nyström method. Comparisons are performed in terms of their theoretical bounds and

also their empirical performance. In particular, we implement three sketching methods

in Matlab, and find that leverage-score based Nyström method outperforms the other

methods. On the other hand, method based on random features has the advantage of

taking only one pass over the data, and hence can be used in the streaming setting.

We conclude this survey by proposing a future research direction towards improving

the efficiency-accuracy tradeoff for random features methods.
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1 Introduction

Kernel methods such as support vector machine and kernel ridge regression are widely used

in machine learning and data analysis. The central idea is commonly referred as the ”kernel

trick”, which allows us to implicitly work with high-dimensional (or even infinite dimensional)

feature mapping by only dealing with pairwise inner products between data points. A kernel

matrix K is n-by-n positive semi-definite (n is the number of data points), with each entry

being the inner product between two data points in the mapped space. Computing K needs

quadratic runtime, so all kernel based algorithms require at least quadratic time complexity.

This partially hinders the use of kernel methods in large-scale settings. In this survey we

compare two types of pass-efficient kernel sketching methods that produce an approximation

of the kernel matrix in sub-quadratic time. Here ”pass-efficient” means that these algorithms

only require a few constant number of passes over the input data. Pass-efficient algorithms

are desirable in the setting when data are stored in disk, since disk I/O usually dominates

the total runtime.

Before introducing the kernel approximation methods, we first present a framework of

standard kernel based learning problems, and one specific example called Kernel Ridge Re-

gression. Consider the following learning problem: given n data points (x1, y1), ..., (xn, yn)

in X × Y , where X is the input space (xi are column vectors), and Y denotes the space of

outputs/labels (yi are scalars), the goal is to learn a function f such that (xi, f(xi)) best

fits the given data. In particular, we are interested in the nonparametric regression problem

setting [5], where our search space is limited to a reproducing kernel Hilbert space (RKHS)

F . More formally, this learning problem can be formulated as a minimization problem:

min
f∈F

1

n

n∑
i=1

l(yi, f(xi)) +
λ

2
||f ||2F , (1)

where ||f ||F is a regularization term, and l : Y × Y → R corresponds to a loss function.

Different learning problems have different loss functions, e.g., mean squared loss function
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is used in Kernel Ridge Regression, logistic loss is used in Kernel Logistic Regression, and

hinge loss is used in the setting of Support Vector Machine.

It is known that any RKHS F is associated with a kernel function k : X × X → R and

a corresponding feature map φ(x) : X → F , such that k(x, x′) = 〈φ(x), φ(x′)〉F for every

x, x′ ∈ X . Using this special structure of F (more specifically, using the representer theorem

of RKHS), we can transform problem (1) into an optimization problem over Rn:

min
α∈Rn

1

n

n∑
i=1

l(yi, (Kα)i) +
λ

2
αTKα, (2)

where K is a kernel matrix with Kij = k(xi, xj). Commonly used kernels include: 1) RBF

kernel, where k(xi, xj) = e−||xi−xj ||
2/(2σ2) with a free parameter σ; and 2) polynomial kernel,

where k(xi, xj) = (xTi xj + c)d for two free parameters c and d. A kernel function evaluated

at two data points can be regarded as a special similarity measure between them. However,

unlike other similarity measures such as cosine similarity, a kernel matrix K must be positive

semi-definite, since by definition k(xi, xj) can be decomposed as the inner product between

φ(xi) and φ(xj).

The formulation in (2) is quite general. To be more concrete, in this survey we focus on

the Kernel Ridge Regression (KRR) problem, which corresponds to l being squared loss:

Kernel Ridge Regression (KRR) : min
α∈Rn

1

2n

n∑
i=1

(yi − (Kα)i)
2 +

λ

2
αTKα. (3)

One nice thing about the KRR problem is that it has a closed-form solution. The solution

to (3) and the corresponding estimated output at point x is given by

f̂K(x) =
∑
i

αiK(x, xi), where α = (K + nλI)−1y. (4)

Here we use subscript in f̂K to emphasize its dependence on the kernel matrix K. We assume

that the underlying data model is yi = f ∗(xi) + ξi, for i = 1, ..., n, where ξi is independent

3



Gaussian random variable with zero-mean and variance σ2. Let R(f̂K) be the mean squared

error of the estimator f̂K . According to [3], R(f̂K) can be decomposed into a bias term and

a variance term:

R(f̂K) :=
1

n
Eξ||f ∗ − f̂K ||2 = nλ2||(K + nλI)−1f ∗||2 +

σ2

n
Tr(K2(K + nλI)−2)

= bias(K)2 + variance(K). (5)

Clearly solving problem (3) requires computing K, and hence the total runtime is at

least O(n2), i.e., quadratic in the number of observations n. This is usually not acceptable

for large-scale learning. To achieve sub-quadratic running time, the common approach is to

compute a smaller sketch matrix Z of size n-by-p such that ZZT ≈ K, and use ZZT in place

of K when solving (2). The sketching dimension p captures the tradeoff between complexity

and accuracy, and is normally different for different sketching algorithms.

In this survey we consider four pass-efficient algorithms in the literature: random Fourier

features [7], random Maclaurin features [6], vanilla Nyström method [9] [4] [3], and leverage

score-based Nyström method [2] [1] [8]. In Section 2 we present the basic ideas of these

algorithms and their theoretical bounds. In Section 3 we compare their empirical perfor-

mance on synthetic data. This survey concludes in Section 4, where we provide suggestions

on future work.

2 Kernel Sketching Algorithms

Recall that the goal is to avoid computing the entire kernel matrix K by replacing K with a

small sketch matrix Z ∈ Rn×p in solving the kernel learning problems. To see why an n-by-p

sketch matrix helps achieve sub-quadratic time complexity, note that since ZZT ≈ K, the

sketch matrix Z can be regarded as features representing the original data points. As a

consequence, the original kernel learning problem can be transformed to a linear learning
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problem. More specifically, substituting Z into the KRR problem (3) gives

min
w∈Rp

1

2n

n∑
i=1

(yi − (Zw)i)
2 +

λ

2
||w||2. (6)

Given Z, the above ridge regression problem can be solved in O(np2) time, which is linear

in the number of observations. Therefore, if Z can be computed in sub-quadratic time, then

the total runtime will be sub-quadratic in n. In this section we present the basic ideas of

two types of methods for sketching a kernel matrix. A summary of these methods is given

in Table 1.

Table 1: A summary of the sketching algorithms considered in this survey

Algorithms No. of Passes Major Pros and Cons
Random Fourier Features [7] one applicable in the streaming setting; lim-

ited to shift-invariant kernels
Random Maclaurin Fea-
tures [6]

one applicable in the streaming setting; lim-
ited to dot-product kernels

Vanilla Nyström [9] [4] [3] two no limitation on kernel types; inapplicable
in the streaming setting

Leveraged Nyström [2] [1] [8] at least four tighter theoretical bound, no limitation on
kernel types; inapplicable for streaming
data

2.1 Random Features Approach

The random features approach is based on the key observation that a kernel function can

be well approximated by sampling a subset of basis functions, using the probability measure

induced by this kernel function. Since the probability distribution depends only on the kernel

function, the algorithm can be performed in an online fashion, i.e., the random features can

be generated as soon as a new data point comes.
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2.1.1 Random Fourier Features

First proposed by Rahimi and Recht [7], the algorithm builds upon the Bochner’s theorem

from harmonic analysis, which says that a positive definite shift-invariant kernel function has

non-negative Fourier transform. Specifically, let us denote the shift-invariant kernel function

k(x, y) as k(x− y), a function on Rd, we can then express k(x− y) as

k(x− y) =

∫
Rd

p(ω)ejω
T (x−y)dω =

∫
Rd

p(ω)(cos(ωTx)cos(ωTy) + sin(ωTx)sin(ωTy))dω, (7)

where p(ω) is guaranteed to be non-negative. If k(x − y) is properly scaled, p(ω) becomes

a valid probability measure. Then the above equation provides a way of constructing new

representations for each data point x ∈ Rd. Let z(x) ∈ R2D be the 2D-dimensional random

Fourier features for data point x, then z(x) can be constructed in the following way:

1. Draw i.i.d. samples ω1, ..., ωD from p(ω).

2. Compute z(x) := 1√
D

[cos(ωT1 x), ..., cos(ωTDx), sin(ωT1 x), ..., sin(ωTDx)].

Let Z ∈ Rn×2D, with z(xi), i = 1, ..., n as row vectors, then ZZT ≈ K, i.e., Z is a sketch

matrix of K. As proved by [7], uniform convergence can be achieved by random Fourier

features based sketching method. Mathematically, supx,y∈M|z(x)z(y)T − k(x, y)| ≤ ε with

constant probability if D = Ω( d
ε2

log σpdiam(M)

ε
), where σ2

p is the second moment of p(ω), M

is a compact set in Rd with diameter diam(M).

2.1.2 Random Maclaurin Features

Random Fourier features are limited to shift-invariant kernels. A lot of subsequent works

develop similar algorithms for handling other families of kernels, among which one important

work is given by Kar and Karnick [6]. They present random feature mapping for dot product

kernels, i.e., k(x, y) = f(〈x, y〉), where f is a function R→ R. Their algorithm builds upon a

classical result in harmonic analysis by Schoenberg, which guarantees that f has a Maclaurin
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expansion with only non-negative coefficients, i.e.,

f(x) =
∞∑
n=0

anx
n, where an =

f (n)(0)

n!
≥ 0. (8)

Similar to the random Fourier features method, given a data point x ∈ Rd, let z(x) =

1√
D

[z1(x), z2(x), ..., zD(x)] be its D-dimensional random Maclaurin features. Then each of

zi(x) (i = 1, ..., D) can be constructed as follows:

1. Choose a non-negative integer N with probability P(N = n) = 1
2n+1 .

2. Generate N d-dimensional vectors w1, ..., wN∈ {−1, 1}d, each wi iid Bernoulli-(1/2).

3. Compute zi(x) =
√
aN2N+1ΠN

j=1w
T
j x.

The random Maclaurin features generated by the above algorithm achieve a similar uniform

convergence bound as that achieved by random Fourier features. As shown in [6], given

a dot-product kernel function k(x, y) = f(〈x, y〉), supx,y∈M|z(x)z(y)T − k(x, y)| ≤ ε with

probability at least 1− δ if D = Ω( d
ε2

log 1
εδ

).

2.2 Nyström Method

First proposed by Williams and Seeger [9] and further improved by Drineas and Mahoney [4],

the Nyström method can be used to compute a low-rank approximation to any positive

semidefinite (PSD) matrix. Since a kernel matrix is PSD, this method can be naturally

applied to approximate K. The algorithm works as follows.

1. Pick p columns of K, concatenate these columns to form a matrix C ∈ Rn×p.

2. Let W ∈ Rp×p be the overlap between C and CT in K, then outputs K̂ = CW †CT .

Here W † represents the Moore-Penrose pseudo inverse of W . The output K̂ is a low rank

approximation of K. The corresponding sketching matrix Z can then be obtained by com-

puting a matrix Z ∈ Rn×p such that ZZT = K̂. The only remaining problem is how to
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subsample columns from K. Different sampling distribution lead to different performance

guarantees. Here we present two sampling schemes.

2.2.1 Vanilla Nyström

This method uses uniform distribution for column subsampling. Suppose K̂ is used in

solving the KRR problem (3), Bach [3] shows that if the number of sampled columns satisfies

p = O(n||diag(K(K + nλ)−1))||∞/ε), then the expected empirical risk (see Eq. (5) for the

definition of empirical risk) is within a factor of 1 + ε of the optimal risk.

The vanilla Nyström can be executed in two passes over the data. The first pass is used

to obtain a subset of data points that are uniformly sampled from the dataset. The second

pass is used to compute the exact entries of the kernel matrix corresponds to the sampled

columns. Since two passes are needed, the vanilla Nyström method cannot be applied when

data are coming from live streams.

2.2.2 Leverage-score Based Nyström

This method is first proposed by Alaoui and Mahoney [2] [1]. They improve upon Bach’s

result [3] by using a biased column sampling distribution. The intuition is that compared

to uniform sampling, statistical leverage scores may capture more structural information of

the kernel matrix. Here the leverage scores are specifically defined for the KRR problem

(3). Given a kernel matrix K and regularization parameter λ, the λ-ridge leverage scores

are defined as

li(λ) = (K(K + nλI)−1)ii, i = 1, .., n, (9)

where (K(K + nλI)−1)ii represents the i-th diagonal entry of K(K + nλI)−1. Since exact

computation of λ-ridge leverage scores requires the full kernel matrix, which we try to avoid,

Alaoui and Mahoney [2] propose a randomized algorithm for approximating the leverage

scores. According to [2], by sampling the columns of K proportionally to the approximated

λ-ridge leverage scores, a similar (1 + ε) statistical guarantee can be achieved using only
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p = O(Tr(K(K + nλ)−1))/ε) columns. Note that this bound is better than that achieved by

the vanilla Nyström method since Tr(M) ≤ n||M ||∞ for any matrix M .

The leverage-score based Nyström algorithm proceeds in two stages. In the first stage,

approximated λ-ridge leverage scores are computed. In the second stage, columns of the

kernel matrix are subsampled with probabilities proportional to the approximated leverage

scores. The sampled column vectors are then used to form a sketched matrix under the

standard Nyström framework. Since each stage of the algorithm needs at least two passes

over the dataset, in total this method requires at least four passes, and hence cannot be used

in the streaming setting.

3 Simulations

We implement three sketching algorithms in Matlab and compare their empirical perfor-

mance on synthetic data. The three sketching methods are random Fourier features, vanilla

Nyström, and leverage-score based Nyström. We follow paper [10] to generate a synthetic

dataset of n = 2000 data points in R100. The dataset consists of 1600 data points uniformly

distributed in four balls of radius 0.5, and 400 points drawn randomly from a standard Gaus-

sian distribution in the first two dimensions (see Figure 1a). The rest 98 coordinates of all

data points are random numbers drawn from standard Gaussian distribution. We focus on

the RBF kernel k(xi, xj) = e−||xi−xj ||
2/(2σ2), with σ = 6. The observations are generated as

yi = (Kα∗)i + ξi, for i = 1, ..., n, where K is the RBF kernel matrix, α∗ represents the true

model coefficients (which is constructed by sampling from standard Gaussian distribution),

and ξi is drawn randomly from Gaussian distribution with zero-mean and variance 0.01.

In Figure 1b we compare the three kernel sketching algorithms in terms of spectral norm

error and estimation error. In the upper figure, we use y-axis to denote relative spectral

norm error ||K − K̂||/||K||, where ||K|| is the spectral norm of K. The x-axis represents

the number of random features (or the number of randomly sampled columns) for each data
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point. In the lower figure, we compare the estimation error achieved by using the sketched

kernel matrices in place of the original kernel matrix when solving KRR problem (3) with

λ = 0.1. The y-axis represents the root mean squared error
√
||y − ŷ||2/n, where ŷ denotes

the estimated response, and n is the total number of observations.

As shown in Figure 1b, the Nyström method outperforms the random Fourier features

method as long as there are enough sampled columns. This result agrees with that in [10],

and the main reason is that random features based methods are data independent while

Nyström methods are data dependent, and hence may capture more structural information

than the random features methods. Comparing the two variants of Nyström methods, we

see that the leverage-score based Nyström method achieve better statistical performance

than the vanilla Nyström method, especially when the number of sampled columns is small.

This is because unlike uniform column subsampling, columns sampled according to leverage

scores are better aligned to the non-uniformities structure of the kernel matrix. However,

the major drawback of leverage-score based Nyström method is that it needs at least four

passes over the dataset (two passes are used for estimating the λ-ridge leverage scores).
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Figure 1: (a) A scatter plot of synthetic data in the first two dimensions. (b) Accuracy
comparison between random Fourier features method, vanilla Nyström method, and the
leverage-score based Nyström method: relative spectral norm error (upper), and root mean
squared estimation error for the KRR problem (lower).
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4 Conclusion

In this survey we compare two types of kernel matrix sketching methods that have been

successfully used to speed up large scale kernel learning problems. The ideas behind the

two approaches are quite different: random features based methods use the fact that some

specific kernel functions can be written as an infinite sum of basis functions with non-

negative coefficients, while Nyström methods use column subsampling to obtain low rank

approximation of positive-semidefinite matrices. Both methods have strength and weakness.

Random features based methods can be used for processing live data streams (since the

features’ sampling distribution depends only on the kernel function and is independent of

the actual data), but are limited to certain types of kernel functions. In contrast, Nyström

methods are generic but usually require two or more passes over the data, and hence cannot

be used in the streaming setting.

Theoretically, both methods have the same 1/ε2 dependence on the norm of error matrix.

In practice, we see that under the same sampling complexity, the sketched kernel matrix

obtained by Nyström methods has better statistical performance than those based on random

features methods. This can be seen as a tradeoff between pass-efficiency and accuracy:

random features methods are performed in one pass over the data, while Nyström methods

use two or more passes, and hence have more chances exploring the data.

One future research direction is to develop new kernel sketching algorithm that can be

used for streaming data but has better accuracy than the current random features based

methods. As implied by the literature, random features methods generally have worse ac-

curacy than Nyström methods, and one possible reason is that the random features are

sampled from a distribution that is independent from the actual data. To alleviate this data

independency and meanwhile maintain the desired one-pass efficiency, we propose to add a

data dependent learning process for the random features method. This process will continu-

ously examine the importance of randomly generated features (i.e., randomly sampled basis

functions), and dynamically remove less important features as more data come.
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