
Copyright

by

Shanshan Wu

2019



The Dissertation Committee for Shanshan Wu
certifies that this is the approved version of the following dissertation:

Unsupervised Learning for Large-Scale Data

Committee:

Sujay Sanghavi, Supervisor

Georgios-Alex Dimakis, Co-Supervisor

Constantine Caramanis

Adam R. Klivans

Rachel A. Ward



Unsupervised Learning for Large-Scale Data

by

Shanshan Wu

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2019



Dedicated to my family.



Acknowledgments

This thesis would not be possible without the support and encourage-

ment from my supervisors Sujay Sanghavi and Alex Dimakis. I learned many

things from them, among which the most important thing is their attitudes

towards research. I would like to thank Sujay for encouraging me to attend

different machine learning conferences, workshops, and seminars, especially

during the early years of my PhD. I learned a lot from the talks given by senior

researchers. Attending conferences and workshops also provide me opportu-

nities to make new friends with people having similar research interests. I

would like to thank Alex for all the meetings we had together, including both

individual meetings and group meetings. Alex is always approachable and

enthusiastic about teaching and research. I have benefited a lot from his writing

and presentation skills. Finally, I would like to thank both Sujay and Alex

for letting me choose research topics that are aligned with my own interests,

and at the same time encouraging me to be open-minded. My PhD would be

dramatically more difficult without their guidance and support.

I would like to thank my committee members Constantine Caramanis,

Adam Klivans, and Rachel Ward. I have benefited a lot from their views and

insights in the broad areas of machine learning and optimization. My special

thanks go to Adam for his paper on learning graphical models, which inspired

v



me to work on this important problem.

I have learned a lot from the graduate courses taken during my PhD

years. I thank Sanjay Shakkottai for his well-prepared courses on probability

and stochastic processes. I am grateful for all I learned from the various

algorithms and theory courses taught by Eric Price, Vijaya Ramachandran,

Evdokia Nikolova, Haris Vikalo, Sujay Sanghavi, Constantine Caramanis, Alex

Dimakis, and Adam Klivans. I enjoyed the data mining foundation course

offered by Joydeep Ghosh.

Special thanks to all the WNCG staff for making my life easier. I thank

Melanie Gulick and Melody Singleton for always being patient when listening

to my questions and giving suggestions.

I have three wonderful internship experiences during my PhD studies.

I would like to thank Hyokun Yun, my internship mentor at Amazon, for

teaching me the basics of natural language processing. I am grateful for all the

discussions I had with my collaborators at Google, including but not limited

to Felix X. Yu, Dan Holtmann-Rice, Sanjiv Kumar, Dmitry Storcheus, Afshin

Rostamizadeh, Petros Mol, and Natalia Ponomareva.

I would like to thank all my labmates and friends for being an important

part of my PhD journey. I cherish all the memories they made along the way.

Last but not least, I would like to express my deepest gratitude to my

parents and husband for their unconditional love and support.

vi



Unsupervised Learning for Large-Scale Data

Publication No.

Shanshan Wu, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Sujay Sanghavi
Co-Supervisor: Georgios-Alex Dimakis

Unsupervised learning involves inferring the inherent structures or pat-

terns from unlabeled data. Since there is no label information, the fundamental

challenge of unsupervised learning is that the objective function is not explicitly

defined. The ubiquity of large-scale datasets adds another layer of complexity

to the overall learning problem. When the data size or dimension is large, even

algorithms with quadratic runtime may be prohibitive.

This thesis presents four large-scale unsupervised learning problems.

We start with two density estimation problems: given samples from a one-

layer ReLU generative model or a discrete pairwise graphical model, the

goal is to recover the parameters of the generative model. We then move

to representation learning of high-dimensional sparse data coming from one-

hot encoded categorical features. We assume that there are additional but

a-priori unknown structures in their support. The goal is to learn a lossless

low-dimensional embedding for the given data. Our last problem is to compute
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low-rank approximations of a matrix product given the individual matrices.

We are interested in the setting where the matrices are too large and can only

be stored in the disk. For every problem presented in this thesis, we (i) design

novel and efficient algorithms to capture the inherent structure from data in

an unsupervised manner; (ii) establish theoretical guarantees and compare

the empirical performance with the state-of-the-art methods; and (iii) provide

source code to support our experimental findings.

viii



Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

Chapter 2. Learning One-Layer ReLU Generative Model 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Problem with Maximum Likelihood Estimation . . . . . 13

2.4.2 Intuition Behind Our Algorithm . . . . . . . . . . . . . 14

2.4.3 Estimate ‖W (i, :)‖2 and b(i) . . . . . . . . . . . . . . . 15

2.4.4 Estimate θij . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.5 Estimate WW T and b . . . . . . . . . . . . . . . . . . . 22

2.5 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Negative Bias . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Two-Layer Generative Model . . . . . . . . . . . . . . . 30

2.7.3 Learning from Noisy Samples . . . . . . . . . . . . . . . 35

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



Chapter 3. Structural Learning of Discrete Graphical Models 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Learning Ising Models . . . . . . . . . . . . . . . . . . . 43

3.2.2 Learning Pairwise Models Over General Alphabet . . . . 46

3.2.3 Learning Pairwise Models in Õ(n2) Time . . . . . . . . 52
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Chapter 1

Introduction

Machine learning problems can be classified as: supervised, unsupervised,

and semi-supervised, based on whether the training data are labeled, unlabeled,

or partially labeled. This thesis focuses on unsupervised learning, and in

particular we will consider two important types of unsupervised learning

problems: (i) density estimation, and (ii) representation learning. The goal of

density estimation is to construct a probability distribution given the observed

samples. In representation learning, the goal is to extract low-dimensional

features to capture the inherent structure in the high-dimensional data. Both

density estimation and representation learning have broad applications in

machine learning and statistics.

The rest of this thesis is organized as follows. In each chapter, we

consider a different unsupervised learning problem, and for each problem, we

present new algorithms, theorectical analysis, and experimental results. We

also provide source code to support the empirical findings.

In Chapter 2, we consider the problem of estimating the parameters of

a d-dimensional rectified Gaussian distribution from i.i.d. samples. A rectified

Gaussian distribution is defined by passing a standard Gaussian distribution
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through a one-layer ReLU neural network (Definition 2.1.1). We give a simple

algorithm to estimate the parameters (i.e., the weight matrix W and bias vector

b of the ReLU neural network) up to an error ε‖W‖F using Õ(1/ε2) samples

and Õ(d2/ε2) time (Theorem 2.4.5). This implies that we can estimate the

distribution up to ε in total variation distance using Õ(κ2d2/ε2) samples, where

κ is the condition number of the covariance matrix (Corollary 2.4.6). Our only

assumption is that the bias vector is non-negative. Without this non-negativity

assumption, we show that estimating the bias vector within any error requires

the number of samples at least exponential in the infinity norm of the bias

vector (Claim 2).

Our algorithm is based on the key observation that vector norms and

pairwise angles can be estimated separately (Algorithm 1). We use a recent

result of learning from truncated samples (Algorithm 3). We also prove sample

complexity lower bounds and the lower bound implies that our algorithm is

optimal for parameter estimation (Theorem 2.5.1 and 2.5.2). Finally, we show

an interesting connection between learning a two-layer generative model and

non-negative matrix factorization (Claim 3). Experimental results are provided

to support our analysis (Section 2.6).

In Chapter 3, we characterize the effectiveness of a classical algorithm

for recovering the Markov graph of a general discrete pairwise graphical model

from i.i.d. samples. The algorithm is (appropriately regularized) maximum

conditional log-likelihood, which involves solving a convex program for each

node; for Ising models this is `1-constrained logistic regression, while for more

2



general alphabets an `2,1 group-norm constraint needs to be used. We show that

this algorithm can recover any arbitrary discrete pairwise graphical model, and

also characterize its sample complexity as a function of model width, alphabet

size, edge parameter accuracy, and the number of variables (Theorem 3.2.1

and 3.2.3). We show that along every one of these axes, it matches or improves

on all existing results and algorithms for this problem (Table 3.1).

Our analysis applies a sharp generalization error bound for logistic

regression when the weight vector has an `1 constraint (or `2,1 constraint)

and the sample vector has an `∞ constraint (or `2,∞ constraint). We also

show that the proposed convex programs can be efficiently solved in Õ(n2)

running time (where n is the number of variables) under the same statistical

guarantees (Section 3.2.3). We provide experimental results to support our

analysis (Section 3.4).

In Chapter 4, we consider the problem of learning lossless low-dimensional

embeddings for high-dimensional sparse data. Linear encoding of sparse vectors

is widely popular, but is commonly data-independent – missing any possible

extra (but a-priori unknown) structure beyond sparsity. We present a new

method to learn linear encoders that adapt to data, while still performing well

with the widely used `1 decoder. The convex `1 decoder prevents gradient

propagation as needed in standard gradient-based training. Our method is

based on the insight that unrolling the convex decoder into T projected sub-

gradient steps can address this issue (Section 4.3). Our method can be seen as

a data-driven way to learn a compressed sensing measurement matrix.

3



We compare the empirical performance of ten algorithms over six sparse

datasets (three synthetic and three real). Our experiments show that there is

indeed additional structure beyond sparsity in the real datasets. Our method is

able to discover it and exploit it to create excellent reconstructions with fewer

measurements (by a factor of 1.1-3x) compared to the previous state-of-the-art

methods (Figure 4.2 and Figure 4.3). We illustrate an application of our method

in learning label embeddings for extreme multi-label classification (Section 4.5).

Our experiments show that our method is able to match or outperform the

precision scores of SLEEC (Table 4.5), which is one of the state-of-the-art

embedding-based approaches for extreme multi-label learning.

In Chapter 5, we present a new algorithm for computing a low rank

approximation of the product ATB by taking only a single pass of the two

matrices A and B (Algorithm 7). The straightforward way to do this is to (a)

first sketch A and B individually, and then (b) find the top components using

PCA on the sketch. Our algorithm in contrast retains additional summary

information about A,B (e.g. row and column norms etc.) and uses this

additional information to obtain an improved approximation from the sketches.

Our key idea Rescaled JL Embedding is based on the observation that the vector

length can be preserved via a simple rescaling operation (Definition 5.5). We

prove that rescaled JL embedding outperforms the standard JL embedding in

terms of preserving the inner product of two vectors (Section 5.3). Finally, we

provide experimental results from an Apache Spark implementation that shows

better computational and statistical performance on real-world and synthetic

4



evaluation datasets (Section 5.4).
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Chapter 2

Learning One-Layer ReLU Generative Model

2.1 Introduction

Estimating a high-dimensional distribution from observed samples is

a fundamental problem in machine learning and statistics. A popular recent

generative approach is to model complex distributions by passing a simple

distribution (typically a standard Gaussian) through a neural network. Param-

eters of the neural network are then learned from data. Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014) and Variational Auto-Encoders

(VAEs) (Kingma and Welling, 2013) are built on this method of modeling

high-dimensional distributions.

Current methods for learning such deep generative models do not have

provable guarantees or sample complexity bounds. In this project we obtain

the first such results for a single-layer ReLU generative model. Specifically,

we study the following problem: Assume that the latent variable z is selected

from a standard Gaussian which then drives the generation of samples from

Chapter 2 is based on material from (Wu et al., 2019a). The author of this dissertation
is the leading author of (Wu et al., 2019a), and contributed to the idea, the analysis, the
implementation and experiments, and the writing of the paper. Source code can be found at
https://github.com/wushanshan/densityEstimation.

6

https://github.com/wushanshan/densityEstimation


a one-layer ReLU activated neural network with weights W and bias b. We

observe the output samples (but not the latent variable realizations z) and we

would like to provably learn the parameters W and b. More formally:

Definition 2.1.1. Let W ∈ Rd×k be the weight matrix, and b ∈ Rd be the

bias vector. We define D(W, b) as the distribution1 of the random variable

x ∈ Rd generated as follows:

x = ReLU(Wz + b), where z ∼ N(0, Ik). (2.1)

Here z is a Gaussian random variable in Rk, and Ik is a k-by-k identity matrix.

Given n samples x1, x2, ..., xn from some D(W, b) with unknown pa-

rameters W and b, the goal is to estimate W and b from the given samples.

Since the ReLU operation is not invertible2, estimating W and b via maximum

likelihood is often intractable. In fact, as we will show in Section 2.4.1, even in

the one-dimensional setting, the negative log-likelihood at a given sample is a

non-convex function of the parameters.

2.1.1 Our Contributions

• We provide a simple and novel algorithm to estimate the parameters of

D(W, b) from i.i.d. samples, under the assumption that b is non-negative.

1It is also called as a rectified Gaussian distribution, and can be used in non-negative
factor analysis (Harva and Kabán, 2007).

2 If the activation function σ (e.g., sigmoid, leaky ReLU, etc.) is invertible, then
σ−1(X) ∼ N(b,WWT ). In that case the problem becomes learning a Gaussian from samples.

7



Our algorithm (Algorithm 1) takes two steps. In Step 1, we estimate b and

the row norms of W using a recent result on estimation from truncated

samples (Algorithm 2). In Step 2, we estimate the angles between any

two row vectors of W using a simple geometric result (Fact 1).

• We prove that the proposed algorithm needs Õ(1/ε2) samples and Õ(d2/ε2)

time, in order to estimate the parameter WW T (reps. b) within an error

ε‖W‖2
F (resp. ε‖W‖F ) (see Theorem 2.4.5 for the precise bound). This

implies that (for the non-degenerate case) the total variation distance

between the learned distribution and the ground truth is within an error

ε given Õ(κ2d2/ε2) samples, where κ is the condition number of WW T

(Corollary 2.4.6).

• Without the non-negativity assumption on b, we show that estimating the

parameters of D(W, b) within an error ε requires Ω(exp(‖b‖2
∞)) samples

(Claim 2). Even when the bias vector b has negative components, our

algorithm can still be used to recover part of the parameters with small

amount of samples (Section 2.7.1).

• We prove two lower bounds on the sample complexity. The first lower

bound (Theorem 2.5.1) says that Ω(1/ε2) samples are required in order to

estimate b up to error ε‖W‖F , which implies that our algorithm is optimal

in estimating the parameters. The second lower bound (Theorem 2.5.2)

says that Ω(d/ε2) samples are required to estimate the distribution up to

TV distance ε.

8



• We empirically evaluate our algorithm in terms of its dependence over

the number of samples, dimension, and condition number (Figure 2.1).

The empirical results are consistent with our analysis.

• We provide a new algorithm to estimate the parameters of a two-layer

generative model (Algorithm 4). Our algorithm uses ideas from non-

negative matrix factorization and the separability assumption (Claim 3).

2.1.2 Notation

We use capital letters to denote matrices and lower-case letters to

denote vectors. We use [n] to denote the set {1, 2, · · · , n}. For a vector

x ∈ Rd, we use x(i) to denote its i-th coordinate. The `p norm of a vector

is defined as ‖x‖p = (
∑

i |x(i)|p)1/p. For a matrix W ∈ Rd×k, we use W (i, j)

to denote its (i, j)-th entry. We use W (i, :) ∈ Rk and W (:, j) ∈ Rd to the

denote the i-th row and the j-th column. The dot product between two

vectors is 〈x, y〉 =
∑

i x(i)y(i). For any a ∈ R, we use R>a to denote the set

R>a := {x ∈ R : x > a}. We use Ik ∈ Rk×k to denote an identity matrix.

2.2 Related Work

We briefly review the relevant work, and highlight the differences com-

pared to our work.

Estimation from truncated samples. Given a d-dimensional distri-

bution D and a subset S ⊆ Rd, truncation means that we can only observe
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samples from D if it falls in S. Samples falling outside S (and their counts

in proportion) are not revealed. Estimating the parameters of a multivari-

ate normal distribution from truncated samples is a fundamental problem in

statistics and a breakthrough was achieved recently (Daskalakis et al., 2018)

on this problem. This is different from our problem because our samples are

formed by projecting the samples of a multivariate normal distribution onto

the positive orthant instead of truncating to the positive orthant. Nevertheless,

a single coordinate of D(W, b) can be viewed as a truncated univariate normal

distribution (Definition 2.4.1). We use this observation and leverage on the

recent results of (Daskalakis et al., 2018) to estimate b and the row norms of

W (Section 2.4.3).

Learning ReLU neural networks. A recent series of work, e.g., (Ge

et al., 2019; Goel et al., 2018; Li and Yuan, 2017; Zhong et al., 2017; Soltanolkotabi,

2017), considers the problem of estimating the parameters of a ReLU neural

network given samples of the form {(xi, yi)}ni=1. Here (xi, yi) represents the

input features and the output target, e.g., yi = ReLU(Wxi + b). This is a

supervised learning problem, and hence, is different from our unsupervised

density estimation problem.

Learning neural network-based generative models. Many ap-

proaches have been proposed to train a neural network to model complex

distributions. Examples include GAN (Goodfellow et al., 2014) and its variants

(e.g., WGAN (Arjovsky et al., 2017), DCGAN (Radford et al., 2015), etc.),

VAE (Kingma and Welling, 2013), autoregressive models (Van Oord et al.,

10



2016), and reversible generative models (Grathwohl et al., 2019). All of those

methods lack theoretical guarantees and explicit sample complexity bounds.

A recent work (Nguyen et al., 2018) proves that training an autoencoder via

gradient descent can possibly recover a linear generative model. This is different

from our setting, where we focus on non-linear generative models. Mazumdar

and Rawat (2019) also consider the problem of learning from one-layer ReLU

generative models. Their modeling assumption is different from ours. They

assume that the bias vector b is a random variable whose distribution satisfies

certain conditions. Besides, there is no distributional assumption on the hidden

variable z. By contrast, in our model, both W and b are deterministic and

unknown parameters. The randomness only comes from z which is assumed to

follow a standard Gaussian distribution.

2.3 Identifiability

Our first question is whether W is identifiable from the distribution

D(W, b). Claim 1 below implies that only WW T can be possibly identified

from D(W, b).

Claim 1. For any matrices satisfying W1W
T
1 = W2W

T
2 , and any vector b,

D(W1, b) = D(W2, b).

Proof. Since W1W
T
1 = W2W

T
2 , there exists a unitary matrix Q ∈ Rk×k that

satisfies W2 = W1Q. Since z ∼ N(0, Ik), we have Qz ∼ N(0, Ik). The claim

then follows.
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Identifying the bias vector b from D(W, b) can be impossible in some

cases. For example, if W is a zero matrix, then any negative coordinate of b

cannot be identified since it will be reset to zero after the ReLU operation.

For the cases when b is identifiable, e.g., by assuming that every row of the W

matrix has at least one non-zero element, our next claim shows an example

that estimating the bias vector to be within an error of ε requires Ω(exp(1/ε2))

samples.

Claim 2. For any value δ > 0, there exists one-dimensional distributions

D(1, b1) and D(1, b2) such that: (a) |b1 − b2| = δ; (b) at least Ω(exp(b2
1/2))

samples are required to distinguish them.

Proof. Let b1 < 0 and b2 = b1 − δ. It is easy to check that (a) holds. To show

(b), note that the probability of observing a positive (i.e., nonzero) sample from

D(1, b1) is upper bounded by P[ReLU(z−|b1|) > 0] = P[z > |b1|] ≤ exp(−b2
1/2),

where the last step follows from the standard Gaussian tail bound Wainwright

(2019). The same bound holds for D(1, b2). To distinguish D(1, b1) and D(1, b2),

we need to observe at least one nonzero sample, which requires Ω(exp(b2
1/2))

samples.

Claim 2 indicates that in order to estimate the parameters within any

error, the sample complexity should scale at least exponentially in ‖b‖2
∞. This

is true if b is allowed to take negative values. Intuitively, if b has large negative
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values, then most of the samples would be zeros. To avoid this exponential

dependence, we now assume that the bias vector is non-negative. In Section 2.4,

we give an algorithm to provably learn the parameters of D(W, b) with a sample

complexity that is polynomial in 1/ε and does not depend on the values of b. In

Section 2.7.1, we show that even when the bias vector has negative coordinates,

our algorithm can still be able to recover part of the parameters with a small

number of samples.

2.4 Algorithm

In this section, we describe a novel algorithm to estimate WW T ∈ Rd×d

and b ∈ Rd from i.i.d. samples of D(W, b). Our goal is to estimate WW T

instead of W since W is not identifiable (Claim 1). Our only assumption is

that the true b is non-negative. As discussed in Claim 2, this assumption can

potentially avoid the exponential dependence in the values of b. Note that our

algorithm does not require to know the dimension k of the latent variable z.

All proofs can be found in the appendix.

2.4.1 Problem with Maximum Likelihood Estimation

One standard approach to parameter estimation is the maximum likeli-

hood method: finding the parameters to maximize the likelihood of observing

the given samples. There are two problems with this maximum likelihood

method in our setting: 1) we cannot compute a closed-form function of the

likelihood, because it involves integration over the domain (−∞, 0]; 2) the
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negative log-likelihood at a given sample can be a non-convex function of the

parameters, as shown in the following example.

Consider the one-dimensional setting, given a sample x = 0, the negative

log-likelihood that x comes from D(σ, b) is

f(b, σ−2) = − ln

(∫ 0

−∞

1√
2πσ2

exp(−(z − b)2

2σ2
) dz

)
=

ln(2π)

2
− ln(σ−2)

2
− ln

(∫ 0

−∞
exp(−(z − b)2

2
σ−2) dz

)
.

Here we follow the parameterization convention of Gaussian distributions3 and

write the negative log-likelihood as a function of (b, σ−2). It is easy to see that

f(0, σ−2) = ln(2) for all σ because any zero-mean Gaussian distribution has

half of the probability mass in (−∞, 0]. This implies that f(b, σ−2) cannot be

a strongly-convex function. By numerically computing the integration, we have

f(0.1, 0.5) + f(0.1, 1.5) < 2 · f(0.1, 1), which indicates that f(b, σ−2) is not a

convex function with respect to σ−2.

2.4.2 Intuition Behind Our Algorithm

Let W (i, :) ∈ Rk be the i-th row (i ∈ [d]) of W . For any i < j ∈ [d], the

(i, j)-th entry of WW T is

〈W (i, :),W (j, :)〉 = ‖W (i, :)‖2‖W (j, :)‖2 cos(θij), (2.2)

where θij is the angle between vectors W (i, :) and W (j, :). Our key idea is

to estimate the norms ‖W (i, :)‖2, ‖W (j, :)‖2, and the angles θij separately, as

3For Gaussian distribution N(µ, σ2), its negative log-likelihood is a convex function with
respect to (µ, σ−2).
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shown in Algorithm 1.

Estimating the row norms4 ‖W (i, :)‖2 as well as the i-th coordinate of

the bias vector b(i) ∈ R can be done by only looking at the i-th coordinate

of the given samples. The idea is to view the problem as estimating the

parameters of a univariate normal distribution from truncated samples5. This

part of the algorithm is described in Section 2.4.3. To estimate θij ∈ [0, π) for

every i < j ∈ [d], we use a simple fact that the angle between any two vectors

can be estimated from their inner products with a random Gaussian vector.

Details of this part can be found in Section 2.4.4.

2.4.3 Estimate ‖W (i, :)‖2 and b(i)

Without loss of generality, we fix i = 1 and describe how to estimate

‖W (1, :)‖2 ∈ R and b(1) ∈ R by looking at the first coordinate of the given

samples.

The starting point of our algorithm is the following observation. Suppose

x ∼ D(W, b), its first coordinate can be written as

x(1) = ReLU(W (1, :)T z + b(1)) = ReLU(y), where y ∼ N(b(1), ‖W (1, :)‖2
2).

(2.3)

Because of the ReLU operation, we can only observe the samples of y when it is

4Without loss of generality, we can assume that ‖W (i, :)‖2 6= 0 for all i ∈ [d]. If W (i, :) is
a zero vector, one can easily detect that and figure out the corresponding non-negative bias
term.

5Another idea is to use the median to estimate the i-th coordinate of the bias vector. This
approach will give the same sample complexity bound as that of our proposed algorithm.
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Algorithm 1: Learning a single-layer ReLU generative model

Input: n i.i.d. samples x1, · · · , xn ∈ Rd from D(W ∗, b∗), b∗ is
non-negative.

Output: Σ̂ ∈ Rd×d, b̂ ∈ Rd.
1 for i← 1 to d do
2 S ← {xm(i),m ∈ [n] : xm(i) > 0};
3 b̂(i), Σ̂(i, i)← NormBiasEst(S);

4 b̂(i)← max
(

0, b̂(i)
)

;

5 end
6 for i < j ∈ [d] do

7 θ̂ij ← π − 2π
n

(∑n
m=1 1(xm(i) > b̂(i))1(xm(j) > b̂(j))

)
;

8 Σ̂(i, j)←
√

Σ̂(i, i)Σ̂(j, j) cos(θ̂ij);

9 Σ̂(j, i)← Σ̂(i, j);

10 end

positive. Given samples of x(1) ∈ R, let us keep the samples that have positive

values (i.e., ignore the zero samples). Now the problem of estimating b(1) and

‖W (1, :)‖2 is equivalent to estimating the parameters of a one-dimensional

normal distribution using samples falling in the set R>0 := {x ∈ R : x > 0}.

Recently, Daskalakis et al. (2018) gave an efficient algorithm for esti-

mating the mean and covariance matrix of a multivariate Gaussian distribution

from truncated samples. We adapt their algorithm for the specific problem

described above. Before describing the details, we start with a formal definition

of the truncated (univariate) normal distribution.

Definition 2.4.1. The univariate normal distribution N(µ, σ2) has probability
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density function

N(µ, σ2;x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
, for x ∈ R. (2.4)

Given a measurable set S ⊆ R, the S-truncated normal distribution N(µ, σ2, S)

is defined as

N(µ, σ2, S;x) =

{
N(µ,σ2;x)∫

S N(µ,σ2;y)dy
if x ∈ S

0 if x 6∈ S
. (2.5)

We are now ready to describe the algorithm in (Daskalakis et al., 2018)

applied to our problem. The pseudocode is given in Algorithm 2. The algorithm

is essentially maximum likelihood by projected stochastic gradient descent

(SGD). Given a sample x ∼ N(µ∗, σ∗2, S), let `(µ, σ;x) be the negative log-

likelihood that x is from N(µ, σ2, S), then `(µ, σ;x) is a convex function with

respect to a reparameterization v = [1/σ2, µ/σ2] ∈ R2. We use `(v;x) to denote

the negative log-likelihood after this reparameterization. Let ¯̀(v) = Ex[`(v;x)]

be the expected negative log-likelihood. Although it is intractable to compute

¯̀(v), its gradient ∇¯̀(v) with respect to v has a simple unbiased estimator.

Specifically, define a random vector g ∈ R2 as

g = −
[
−x2/2
x

]
+

[
−z2/2
z

]
, where x ∼ N(µ∗, σ∗2, S), z ∼ N(µ, σ2, S). (2.6)

We have that ∇¯̀(v) = Ex,z[g], i.e., g is an unbiased estimator of ∇¯̀(v).

Eq. (2.6) indicates that one can maximize the log-likelihood via SGD,

however, in order to efficiently perform this optimization, we need three extra

steps.
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First, the convergence rate of SGD depends on the expected gradient

norm E[‖g‖2
2] (Shalev-Shwartz and Ben-David, 2014, Theorem 14.11). In

order to maintain a small gradient norm, we transform the given samples

to a new space (so that the empirical mean and variance is well-controlled)

and perform optimization in that space. After the optimization is done, the

solution is transformed back to the original space. Specifically, given samples

x1, · · · , xn ∼ N(µ∗, σ∗2,R>0), we transform them as

xi →
xi − µ̂0

σ̂0

, where µ̂0 =
1

n

n∑
i=1

xi, σ̂
2
0 =

1

n

n∑
i=1

(xi − µ̂0)2. (2.7)

In the transformed space, the problem becomes estimating parameters of a

normal distribution with samples truncated to the set R>−µ̂0/σ̂0 = {x ∈ R :

x > −µ̂0/σ̂0}.

Second, we need to control the strong-convexity of the objective function.

This is done by projecting the parameters onto a domain where the strong-

convexity is bounded. The domain Dr is parameterized by r > 0 and is defined

as

Dr = {v ∈ R2 : 1/r ≤ v(1) ≤ r, |v(2)| ≤ r}. (2.8)

According to (Daskalakis et al., 2018, Section 3.4), r = O(ln(1/α)/α2) is a hyper-

parameter that only depends on α =
∫
S
N(µ∗, σ∗2; y)dy (i.e., the probability

mass of original truncation set S). In our setting, we have α ≥ 1/2. This is

because the original truncation set is R>0 and µ∗ = b(1) ≥ 0. A large value of

r would lead to a small strong-convexity parameter. In our experiments, we

set r = 3.
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Third, a single run of the projected SGD algorithm only guarantees

a constant probability of success. To amplify the probability of success to

1 − δ/d, a standard procedure is to repeat the algorithm O(ln(d/δ)) times.

This procedure is illustrated in Step 2-5 in Algorithm 2.

Algorithm 2: NormBiasEst

Input: Samples from N(µ, σ2,R>0).

Output: µ̂ ∈ R, σ̂2 ∈ R.
1 Shift and rescale the samples using (2.7);
2 Split the samples into B = O(ln(d/δ)) batches;
3 For batch i ∈ [B], run ProjSGD (Algorithm 3) to get vi ∈ R2;
4 S ← {v1, · · · , vB};
5 v̂ ← arg minvi∈S

∑
j∈[B]‖vi − vj‖2;

6 Transform v̂ back to the original space;

7 µ̂← v̂(2)/v̂(1), σ̂2 ← 1/v̂(1);

Algorithm 3: ProjSGD

Input: T = Õ(ln(d/δ)/ε2), λ > 0.
Output: v ∈ R2.

1 Initialize v(0) = [1, 0] ∈ R2;
2 for t← 1 to T do
3 g(t) ← Estimate the gradient using (2.6);

4 v(t) ← v(t−1) − g(t)/(λ · t);
5 v(t) ← Project v(t) to the domain in (2.8);

6 end

7 v ←
∑T

t=1 v
(t)/T ;

Lemma 2.4.1. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n =

Õ
(

1
ε2

ln(d
δ
)
)

samples from D(W ∗, b∗) (for some non-negative b∗) and outputs

b̂(i) and Σ̂(i, i) for all i ∈ [d] that satisfy

(1− ε)‖W ∗(i, :)‖2
2 ≤ Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖2

2, |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2

(2.9)
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with probability at least 1− δ.

2.4.4 Estimate θij

To estimate the angle between any two vectors W ∗(i, :) and W ∗(j, :)

(where i 6= j ∈ [d]), we will use the following result.

Fact 1. (Lemma 6.7 in (Williamson and Shmoys, 2011)). Let z ∼ N(0, Ik)

be a standard Gaussian random variable in Rk. For any two non-zero vectors

u, v ∈ Rk, the following holds:

P
z∼N(0,Ik)

[uT z > 0 and vT z > 0] =
π − θ

2π
, (2.10)

where θ = arccos
(
〈u,v〉
‖u‖2‖v‖2

)
.

Fact 1 says that the angle between any two vectors can be estimated

from the sign of their inner products with a Gaussian random vector. Let

x ∼ D(W ∗, b∗), since b∗ is assumed to be non-negative, Fact 1 gives an unbiased

estimator of the pairwise angles.

Lemma 2.4.2. Suppose that x ∼ D(W ∗, b∗) and that b∗ ∈ Rd is non-negative,

for all i 6= j ∈ [d],

P
x∼D(W ∗,b∗)

[x(i) > b∗(i) and x(j) > b∗(j)] =
π − θ∗ij

2π
, (2.11)

where θ∗ij is the angle between vectors W ∗(i, :) and W ∗(j, :).

Proof. Since x(i) = ReLU
(
W ∗(i, :)T z + b∗(i)

)
and b∗ is non-negative, we have

LHS = P
z∼N(0,Ik)

[W ∗(i, :)T z > 0 and W ∗(j, :)T z > 0] =
π − θ∗ij

2π
= RHS,
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where the second equality follows from Fact 1.

Lemma 2.4.2 gives an unbiased estimator of θ∗ij, however, it requires

knowing the true bias vector b∗. In the previous section, we give an algorithm

that can estimate b∗(i) within an additive error of ε‖W ∗(i, :)‖2 for all i ∈ [d].

Fortunately, this is good enough for estimating θ∗ij within an additive error of

ε, as indicated by the following lemma.

Lemma 2.4.3. Let x ∼ D(W ∗, b∗), where b∗ is non-negative. Suppose that

b̂ ∈ Rd is non-negative and satisfies |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2 for all i ∈ [d]

and some ε > 0. Then for all i 6= j ∈ [d],∣∣∣P
x
[x(i) > b̂(i) and x(j) > b̂(j)]− P

x
[x(i) > b∗(i) and x(j) > b∗(j)]

∣∣∣ ≤ ε.

(2.12)

Let 1(·) be the indicator function, e.g., 1(x > 0) = 1 if x > 0 and is 0

otherwise. Given samples {xm}nm=1 of D(W ∗, b∗) and an estimated bias vector

b̂, Lemma 2.4.2 and 2.4.3 implies that θ∗ij can be estimated as

θ̂ij = π − 2π

n

n∑
m=1

1(xm(i) > b̂(i) and xm(j) > b̂(j)). (2.13)

The following lemma shows that the estimated θ̂ij is close to the true θ∗ij.

Lemma 2.4.4. For a fixed pair of i 6= j ∈ [d], for any ε, δ ∈ (0, 1), suppose

b̂ satisfies the condition in Lemma 2.4.3, given 80 ln(2/δ)/ε2 samples, with

probability at least 1− δ, | cos(θ̂ij)− cos(θ∗ij)| ≤ ε.
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2.4.5 Estimate WW T and b

Our overall algorithm is given in Algorithm 1. In the first for-loop, we

estimate the row norms of W ∗ and b∗. In the second for-loop, we estimate the

angles between any two row vectors of W ∗.

Theorem 2.4.5. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n =

Õ
(

1
ε2

ln(d
δ
)
)

samples from D(W ∗, b∗) (for some non-negative b∗) and outputs

Σ̂ ∈ Rd×d and b̂ ∈ Rd that satisfy

‖Σ̂−W ∗W ∗T‖F ≤ ε‖W ∗‖2
F , ‖b̂− b∗‖2 ≤ ε‖W ∗‖F (2.14)

with probability at least 1− δ. Algorithm 1 runs in time Õ
(
d2

ε2
ln(d

δ
)
)

and space

Õ
(
d
ε2

ln(d
δ
) + d2

)
.

Theorem 2.4.5 characterizes the sample complexity to achieve a small

parameter estimation error. We are also interested in the distance between

the estimated distribution and the true distribution. Let TV(A,B) be the

total variation (TV) distance between two distributions A and B. Note that

in order for the TV distance to be meaningful6, we restrict ourselves to the

non-degenerate case, i.e., when W is a full-rank square matrix. The following

corollary characterizes the number of samples used by our algorithm in order

to achieve a small TV distance.

6The TV distance between two different degenerate distributions can be a constant. As
an example, let N(0,Σ1) and N(0,Σ2) be two Gaussian distributions in Rd. If both Σ1,Σ2

have rank smaller than d, then TV(N(0,Σ1),N(0,Σ2)) = 1 as long as Σ1 6= Σ2.
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Corollary 2.4.6. Suppose that W ∗ ∈ Rd×d is full-rank. Let κ be the condition

number of W ∗W ∗T . For any ε ∈ (0, 1/2] and δ ∈ (0, 1), Algorithm 1 takes

n = Õ
(
κ2d2

ε2
ln(d

δ
)
)

samples from D(W ∗, b∗) (for some non-negative b∗) and

outputs a distribution D(Σ̂1/2, b̂) that satisfies

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ ε, (2.15)

with probability at least 1 − δ. Algorithm 1 runs in time Õ
(
κ2d4

ε2
ln(d

δ
)
)

and

space Õ
(
κ2d3

ε2
ln(d

δ
)
)

.

2.5 Lower Bounds

In the previous section, we gave an algorithm to estimate W ∗W ∗T and

b∗ using i.i.d. samples from D(W ∗, b∗), and analyzed its sample complexity.

In this section, we provide lower bounds for this density estimation problem.

More precisely, we try to answer the following question: what is the minimum

number of samples necessary to learn D(W ∗, b∗) up to some error measure ε?

Before stating our lower bounds, we first formally describe the distri-

bution learning framework. The framework that we consider here is quite

standard. It can be viewed as the minimax framework in statistics or the

PAC-learning framework in learning theory. Specifically, let S be a class of

distributions. Let d be some distance function between the two distributions

(or between the parameters of the two distributions). We say that a distribution

learning algorithm learns S with sample complexity m(ε) if for any distribution

p ∈ S, given m(ε) i.i.d. samples from p, it constructs a distribution q such that
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d(p, q) ≤ ε with success probability at least 2/37.

We have analyzed two types of distance functions for Algorithm 1 so

far: the distance in the parameter space (Theorem 2.4.5), and the TV distance

between two distributions (Corollary 2.4.6). Correspondingly, we will provide

two sample complexity lower bounds in terms of these two distance functions.

Theorem 2.5.1. (Lower bound for parameter estimation). Let σ > 0 be a

fixed and known scalar. Let Id be the identity matrix in Rd. Let S := {D(W, b) :

W = σId, b ∈ Rd non-negative} be a class of distributions in Rd. Any algorithm

that learns S to satisfy ‖b̂ − b∗‖2 ≤ ε‖W ∗‖F with success probability at least

2/3 requires Ω(1/ε2) samples.

Theorem 2.5.2. (Lower bound for distribution estimation). Let S := {D(W, 0) :

W ∈ Rd×d full rank} be a set of distributions in Rd. Any algorithm that learns

S within total variation distance ε and success probability at least 2/3 requires

Ω(d/ε2) samples.

Comparing the sample complexity achieved by our algorithm (Theo-

rem 2.4.5 and Corollary 2.4.6) and the above lower bounds, we can see that 1)

our algorithm matches the sample complexity lower bound (up to log factors)

for parameter estimation; 2) there is a gap between our sample complexity

and the lower bound for learning distributions in TV distance. There are two

possible reasons why this gap shows up.

7We focus on constant success probability here as standard techniques can be used to
boost the success probability to 1 − δ with an extra multiplicative factor ln(1/δ) in the
sample complexity.
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• The lower bound given in Theorem 2.5.2 may be loose. In fact, because

learning a d-dimensional Gaussian distribution up to TV distance ε

requires Θ̃(d2/ε2) samples (this is both sufficient and necessary (Ashtiani

et al., 2018)), it is reasonable to guess that learning rectified Gaussian

distributions also requires at least Ω(d2/ε2) samples. It is thus interesting

to see if one can show a better lower bound than Ω(d/ε2).

• Our sample complexity of learning D(W, b) up to TV distance ε also de-

pends on the condition number κ of WW T . Intuitively, this κ dependence

shows up because our algorithm estimates WW T entry-by-entry instead

of estimating the matrix as a whole. Besides, our algorithm is a proper

learning algorithm, meaning that the output distribution belongs to the

family D(W, b). By contrast, the lower bound proved in Theorem 2.5.2

allows any non-proper learning algorithm, i.e., there is no constraint on

the output distribution. One interesting direction for future research is

to see if one can remove this κ dependence.

2.6 Experiments

In this section, we provide empirical results to verify the correctness

of our algorithm as well as the analysis. The algorithm is implemented in

MATLAB. Code to reproduce our result can be found at https://github.

com/wushanshan/densityEstimation. All experiments are done in a personal

desktop. The hyper-parameters are set as B = 1 (in Algorithm 2), r = 3 and

λ = 0.1 (in Algorithm 3).
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We evaluate three performance metrics, as shown in Figure 2.1. The first

two metrics measure the error between the estimated parameters and the ground

truth. Specifically, we compute the estimation errors analyzed in Theorem 2.4.5:

‖Σ̂−W ∗W ∗T‖F/‖W‖2
F and ‖b̂− b‖2/‖W‖F . Besides the parameter estimation

error, we are also interested in the TV distance analyzed in Corollary 2.4.6:

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
. It is difficult to compute the TV distance exactly,

so we instead compute an upper bound of it. Let KL(A||B) denote the KL

divergence between two distributions. Let Σ∗ = W ∗W ∗T . Assuming that both

Σ∗ and Σ̂ are full-rank, we have

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ TV

(
N(̂b, Σ̂),N(b∗,Σ∗)

)
≤
√

KL
(
N(̂b, Σ̂)||N(b∗,Σ∗)

)
/2.

The first inequality follows from the data-processing inequality given in Lemma

A.6.3 of Appendix A.6 (see also (Ashtiani et al., 2018, Fact A.5)): for any

function f and random variables X, Y over the same space, TV(f(X), f(Y )) ≤

TV(X, Y ). The second inequality follows from the Pinsker’s inequality (Tsy-

bakov, 2009, Lemma 2.5).

Sample Efficiency. The left plot of Figure 2.1 shows that both the

parameter estimation errors and the KL divergence decrease when we have

more samples. Our experimental setting is simple: we set the dimension as

d = k = 5 and the condition number as 1; we generate W ∗ as a random

orthonormal matrix; we generate b∗ as a random normal vector, followed by

a ReLU operation (to ensure non-negativity). This plot indicates that our
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Figure 2.1: Best viewed in color. Empirical performance of our algorithm
with respect to three parameters: number of samples n, dimension d, and the
condition number κ. Left: Fix d = 5 and κ = 1. Middle: Fix n = 5 × 105

and κ = 1. Right: Fix n = 5× 105 and d = 5. Every point shows the mean
and standard deviation across 10 runs. Each run corresponds to a different W ∗

and b∗.

algorithm is able to accurately estimate the true parameters and obtain a

distribution that is close to the true distribution in TV distance.

Dependence on Dimension. In the middle plot of Figure 2.1, we

use 5× 105 samples and keep the condition number to be 1. We then increase

the dimension (d = k) from 5 to 25. Both W ∗ and b∗ are generated in the

same manner as the previous plot. As shown in the middle plot, the parameter

estimation errors maintain the same value while the KL divergence increases

as the dimension increases. This is consistent with our analysis, because the

sample complexity in Theorem 2.4.5 is dimension-free (ignoring the log factor)

while the sample complexity in Corollary 2.4.6 depends on d2.

Dependence on Condition Number. In the right plot of Figure 2.1,

we keep the dimension d = k = 5 and the number of samples 5× 105 fixed. We
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then increase the condition number κ of W ∗W ∗T . This plot shows the same

trend as the middle plot, i.e., the parameter estimation errors remain the same

while the KL divergence increases as κ increases, which is again consistent with

our analysis. The number of samples required to achieve an additive estimation

error (Theorem 2.4.5) does not depend on κ, while the sample complexity to

guarantee a small TV distance (Corollary 2.4.6) depends on κ2.

2.7 Open Problems

2.7.1 Negative Bias

Our algorithm relies on the assumption that the bias vector is non-

negative. This assumption is required to ensure that Lemma 2.4.2 holds, which

subsequently ensures that the pairwise angles between the row vectors of W ∗

can be correctly recovered. A weaker assumption would be allowing the bias

vector b∗ to be negative but constraining the largest negative values. Designing

algorithms under this weaker assumption is an interesting direction for future

research.

When b∗ has negative components, running our algorithm can still

recover part of the parameters with a small number of samples. Specifically,

let Ω := {i ∈ [d] : b∗(i) ≥ 0} be the set of coordinates that b∗ is non-negative;

let b∗Ω ∈ R|Ω| and W ∗
Ω ∈ R|Ω|×k be the sub-vector and sub-matrix associated

with the coordinates in Ω. Then given O( 1
ε2

ln(d
δ
) samples, the output of our

algorithm b̂ ∈ Rd and Σ̂ ∈ Rd×d satisfies

‖Σ̂Ω×Ω −W ∗
ΩW

∗T
Ω ‖F ≤ ε‖W ∗

Ω‖2
F , ‖b̂Ω − b∗Ω‖2 ≤ ε‖W ∗

Ω‖F ,
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with probability at least 1−δ. This is the same guarantee given in Theorem 2.4.5.

The reason is that our algorithm only uses the i-th and j-th coordinates

of the samples to estimate 〈W ∗(i, :),W ∗(j, :)〉 and b∗(i), b∗(j). As a result,

Theorem 2.4.5 still holds for this part of the parameters.

For the rest part of the parameters, if the negative components of b∗

are small (in absolute value), then the error of our algorithm will be also small.

Let Ωc be the complement of Ω. We assume that there is a value η ≥ 0 such

that the negative coordinates of b∗ satisfy

b∗(i) ≥ −η‖W ∗(i, :)‖2, for all i ∈ Ωc.

Given Õ(ln(d)/ε2) samples, the output of our algorithm satisfies

|̂b(i)− b∗(i)| ≤ max(η, ε)‖W ∗(i, :)‖2, for all i ∈ Ωc.

One can show a similar result for 〈W ∗(i, :),W ∗(j, :)〉, where i ∈ Ωc and j ∈ [d]:

|Σ̂(i, j)− 〈W ∗(i, :),W ∗(j, :)〉 | ≤ 7 max(η, ε)‖W ∗(i, :)‖2‖W ∗(j, :)‖2.

Comparing the above two equations with (A.5) and (A.8), we see that the error

from the negative bias is small if η = O(ε). If η is large, i.e., if b∗ have large

negative components, then estimating those parameters becomes difficult (as

indicated by Claim 2). In that case, maybe one should directly estimate the

distribution without estimating the parameters. This is an interesting direction

for future research.
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2.7.2 Two-Layer Generative Model

One natural generalization of our problem is to consider distributions

defined by a two-layer generative model:

Definition 2.7.1. Given A ∈ Rd×p, W ∈ Rp×k, and b ∈ Rp, we define

D(A,W, b) as the distribution of a random variable x ∈ Rd generated as

follows:

x = A ReLU(Wz + b), where z ∼ N(0, Ik). (2.16)

Given i.i.d. samples x ∼ D(A,W, b), can we recover the parameters

A,W, b (up to permutation and scaling of the columns of A)? While this

problem seems hard in general, we find an interesting connection between this

problem and non-negative matrix factorization. A non-negative matrix has all

its entries being non-negative. Note that in our problem, the A matrix does

not need to be a non-negative matrix.

Connection to Non-negative Matrix Factorization (NMF). In

MNF, we are given a non-negative matrix X ∈ Rd×n and an integer p > 0,

the goal is to find two non-negative matrices A ∈ Rd×p,M ∈ Rp×n such

that X = AM . This problem is NP-hard in general (Vavasis, 2009). Arora

et al. (2012) give the first polynomial-time algorithm under the “separability”

condition (Donoho and Stodden, 2004):

Definition 2.7.2. The factorization X = AM is called separable8 if for each

8Here we define separability with respect to the M matrix while (Arora et al., 2012,
Definition 5.1) defines it with respect to the A matrix, but they are equivalent definitions.
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i ∈ [p], there is a column f(i) ∈ [n] of M such that M(:, f(i)) ∈ Rp has

only one non-zero positive entry at the i-th location, i.e., M(i, f(i)) > 0 and

M(j, f(i)) = 0 for j 6= i.

If the separability condition holds, then the algorithm proposed by (Arora

et al., 2012) is guaranteed to find a separable non-negative factorization in

time polynomial in n, p, d.

In our problem, we are given n samples {xi}ni=1 from D(A,W, b). Stack-

ing these samples to form a matrix X ∈ Rd×n as

X = AM, where M(:, i) = ReLU(Wzi + b), i ∈ [n]. (2.17)

Note that M ∈ Rp×n is a non-negative matrix while A can be an arbitrary

matrix. Nevertheless, if M satisfies the separability condition (Definition 2.7.2),

and A has full column rank (i.e., the columns of A are linearly independent),

then we can still use the same idea of (Arora et al., 2012) to exactly recover

A and M (up to permutation and scaling of the column vectors in A). Once

M ∈ Rp×n is recovered, estimating W and b is the same problem as learning

one-layer ReLU generative model, and hence can be done by our algorithm

(Algorithm 1) assuming that b is non-negative.

The pseudocode is given in Algorithm 4. We first create a set S by

normalizing each sample and removing zero and duplicated vectors. The next

step is to check for each vector v ∈ S, whether v can be represented as a conical

sum (i.e., non-negative linear combination) of the rest vectors in S. This can
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be done by checking the feasibility of a linear program. For example, checking

whether vector v can be expressed as a conical sum of two vectors w1, w2 is

equivalent to checking whether the following linear program is feasible:

min
c1≥0, c2≥0

c1 + c2 s.t. c1w1 + c2w2 = v.

We only keep a vector if it cannot be written as the conical sum of the other

vectors. Those vectors are then stacked to form Â. Let Â† = (ÂT Â)−1ÂT

be the pseudo-inverse of Â. The last step is to compute {Â†xi}ni=1 and treat

them as samples from one-layer ReLU generative model so that we can run

Algorithm 1 to estimate W ∗W ∗T and b∗.

Algorithm 4: Learning a two-layer ReLU generative model

Input: n i.i.d. samples x1, · · · , xn ∈ Rd from D(A∗,W ∗, b∗), b∗ is
non-negative, A∗ has linearly independent column vectors.

Output: Â ∈ Rd×p, Σ̂ ∈ Rp×p, b̂ ∈ Rp.
1 S ← ∅;
2 for i← 1 to n do
3 if xi 6= 0 then
4 S ← S ∪ {xi/‖xi‖2};
5 end

6 end
7 Remove duplicated vectors from S;
8 for v ∈ S do
9 if v is a conical sum of the rest vectors in S then

10 Remove v from S;
11 end

12 end

13 Â← stack vectors from S;

14 Σ̂, b̂← run Algorithm 1 with samples {Â†xi}ni=1.
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Claim 3. Define X ∈ Rd×n and M ∈ Rp×n as in (2.17). Without loss of

generality, we assume that the column vectors of A∗ have unit `2-norm. Let Â

be the output of Algorithm 4. If A∗ has full column rank, and M satisfies the

separability condition in Definition 2.7.2, then there is a way to permute the

column vectors of Â so that Â = A∗.

Proof. After Step 1-7, Algorithm 4 produces a set S which contains all non-zero

and normalized samples. Besides, the vectors in S are unique because the

duplicated ones are removed in Step 7. To prove Â = A∗ (up to permutation

of the columns), we only need to prove that

• (a) All the (normalized) column vectors of A∗ are in S.

• (b) Except the column vectors in A∗, every vector in S can be represented

as a conical sum of the rest vectors in S.

• (c) Any column vector in A∗ cannot be represented as a conical sum of

the rest vectors in S.

(a) is true because the M matrix satisfies the separability condition.

According to Definition 2.7.2, for every column vector of A∗, there is at least

one sample x ∈ Rd which is a scaled version of that column vector.

To prove (b), first note that all the vectors in S can be represented as

a conical combination of the column vectors of A∗. This is because M is a

non-negative matrix and the samples are X = A∗M . From (a), we know that
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all the column vectors of A∗ are also in S. Therefore, all the samples, except

those that are scaled versions of A∗’s columns, can be written as a conical

combination of the rest vectors in S.

We will prove (c) by contradiction. If a column vector of A∗ can be

written as a conical combination of the rest vectors in S, then it means that

this column vector can be represented as a conical combination of the column

vectors in A∗. This will violate the fact that A∗ has full column rank. Hence,

any column vector in A∗ cannot be represented as a conical sum of the rest

vectors in S.

According to Claim 3, if M satisfies the separability condition, and

A∗ has full column rank, then Algorithm 4 can exactly recover A∗ (up to

permutation and scaling of the column vectors in A∗). Once A∗ is recovered,

estimating W and b is the same problem as learning one-layer ReLU generative

model, which can be done by Algorithm 1. One problem with the above

approach is that it requires the M ∈ Rp×n matrix to satisfy the separability

condition. This is true when, e.g., W has full row rank, and the number of

samples is Ω(2k). Developing sample-efficient algorithms for more general

generative models is definitely an interesting direction for future research.

We simulate Algorithm 4 on a two-layer generative model with k = p = 5

and d = 10. We generate A∗ ∈ R10×5 as a random Gaussian matrix, W ∗ ∈ R5×5

as a random orthogonal matrix, and let b∗ be zero. Given n, we run 100 times

of Algorithm 4, and each time we use a different set of random samples with
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size n. Table 2.1 lists the fraction of runs that Algorithm 4 successfully recovers

A∗. We see that the probability of success increases as we are given more

samples.

Number of samples n 50 100 150
Probability of success in 100 runs 0.30 0.78 0.99

Table 2.1: We simulate a two-layer generative model: A∗ ∈ R10×5 is a random
Gaussian matrix, W ∗ ∈ R5×5 is a random orthogonal matrix, and b∗ = 0. For a
fixed number of samples, we run 100 times of Algorithm 4 with different input
samples. This table shows the fraction of runs that Algorithm 4 successfully
recovers A∗.

2.7.3 Learning from Noisy Samples

It is an interesting direction to design algorithms that can learn from

noisy samples, e.g., samples of the form x = ReLU(W ∗z + b∗) + ξ, where

ξ ∼ N(0, σ2Id) represents the noise. In that case, Algorithm 1 would not work

because both parts of our algorithm (i.e., learn from truncated samples, and

estimate the pairwise angles) require clean samples. Nevertheless, the above

problem is easy when b∗ = 0. This is because we can estimate ‖W ∗(i, :)‖2 using

the fact that Ez,ξ[x(i)2] = ‖W ∗(i, :)‖2
2/2, and estimate θ∗ij using the following

fact (Cho and Saul, 2009):

E
z,ξ

[x(i)x(j)] =
1

2π
‖W ∗(i, :)‖2‖W ∗(j, :)‖2(sin (θij)− (π − θij) cos(θij)) .
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2.8 Conclusion

A popular generative model nowadays is defined by passing a standard

Gaussian random variable through a neural network. In this project we are

interested in the following fundamental question: Given samples from this

distribution, is it possible to recover the parameters of the neural network? We

designed a new algorithm to provably recover the parameters of a single-layer

ReLU generative model from i.i.d. samples, under the assumption that the bias

vector is non-negative. We analyzed the sample complexity of the proposed

algorithm in terms of two error metrics: parameter estimation error and total

variation distance. We also showed an interesting connection between learning

a two-layer generative model and non-negative matrix factorization.

While our focus here is parameter recovery, one interesting direction

for future work is to see whether one can directly estimate the distribution in

some distance without first estimating the parameters. Another interesting

direction is to develop provable learning algorithms for the agnostic setting

instead of the realizable setting. Besides designing new algorithms, analyzing

the existing algorithms, e.g., GANs, VAEs, and reversible generative models, is

also an important research direction.
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Chapter 3

Structural Learning of Discrete Graphical

Models

3.1 Introduction

Undirected graphical models provide a framework for modeling high

dimensional distributions with dependent variables and have many applications

including in computer vision (Choi et al., 2010), bio-informatics (Marbach

et al., 2012), and sociology (Eagle et al., 2009). In this project we characterize

the effectiveness of a natural, and already popular, algorithm for the structure

learning problem. Structure learning is the task of finding the dependency

graph of a Markov random field (MRF) given i.i.d. samples; typically one is

also interested in finding estimates for the edge weights as well. We consider the

structure learning problem in general (non-binary) discrete pairwise graphical

models. These are MRFs where the variables take values in a discrete alphabet,

but all interactions are pairwise. This includes the Ising model as a special

case (which corresponds to a binary alphabet).

Chapter 3 is based on material from (Wu et al., 2019c). The author of this dissertation
is the leading author of (Wu et al., 2019c), and contributed to the idea, the analysis, the
implementation and experiments, and the writing of the paper. Source code can be found at
https://github.com/wushanshan/GraphLearn.
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The natural and popular algorithm we consider is (appropriately regu-

larized) maximum conditional log-likelihood for finding the neighborhood set

of any given node. For the Ising model, this becomes `1-constrained logistic

regression; more generally for non-binary graphical models the regularizer

becomes an `2,1 norm. We show that this algorithm can recover all discrete

pairwise graphical models, and characterize its sample complexity as a function

of the parameters of interest: model width, alphabet size, edge parameter

accuracy, and the number of variables. We match or improve dependence on

each of these parameters, over all existing results for the general alphabet case

when no additional assumptions are made on the model (see Table 3.1). For

the specific case of Ising models, some recent work has better dependence on

some parameters (see Table B.1 in Appendix B.1).

We now describe the related work, and then outline our contributions.

3.1.1 Related Work

In a classic paper, Ravikumar et al. (2010) considered the structure

learning problem for Ising models. They showed that `1-regularized logistic

regression provably recovers the correct dependency graph with a very small

number of samples by solving a convex program for each variable. This

algorithm was later generalized to multi-class logistic regression with group-

sparse regularization, which can learn MRFs with higher-order interactions and

non-binary variables (Jalali et al., 2011). A well-known limitation of (Ravikumar

et al., 2010; Jalali et al., 2011) is that their theoretical guarantees only work
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for a restricted class of models. Specifically, they require that the underlying

learned model satisfies technical incoherence assumptions, that are difficult to

validate or check.

Paper Assumptions Sample complexity (N)

Greedy algo-
rithm (Hamil-
ton et al.,
2017)

1. Alphabet size k ≥ 2
O(exp(k

O(d) exp(O(d2λ))

ηO(1) )
2. Model width ≤ λ · ln(nk

ρ
))

3. Degree ≤ d

4. Minimum edge weight ≥ η

5. Probability of success ≥ 1−ρ

Sparsitron (Kli-
vans and Meka,
2017)

1. Alphabet size k ≥ 2

O(λ
2k5 exp(14λ)

η4 ln(nk
ρη

))
2. Model width ≤ λ

3. Minimum edge weight ≥ η

4. Probability of success ≥ 1−ρ
`2,1-constrained
logistic
regression (Our
result)

1. Alphabet size k ≥ 2

O(λ
2k4 exp(14λ)

η4 ln(nk
ρ

))
2. Model width ≤ λ

3. Minimum edge weight ≥ η

4. Probability of success ≥ 1−ρ

Table 3.1: Sample complexity comparison for different graph recovery algo-
rithms. The pairwise graphical model has alphabet size k. For k = 2 (i.e., Ising
models), our algorithm reduces to the `1-constrained logistic regression (see
Table B.1 in Appendix B.1 for related work on learning Ising models). Our
sample complexity has a better dependency on the alphabet size (Õ(k4) versus
Õ(k5)) than that in (Klivans and Meka, 2017).

A large amount of recent work has since proposed various algorithms to

obtain provable learning results for general graphical models without requiring

the incoherence assumptions. We now describe the (most related part of the

extensive) related work, followed by our results and comparisons (see Table 3.1).

For a discrete pairwise graphical model, let n be the number of variables and k
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be the alphabet size; define the model width λ as the maximum neighborhood

weight (see Definition 3.2.1 and 3.2.2 for the precise definition). For structure

learning algorithms, a popular approach is to focus on the sub-problem of

finding the neighborhood of a single node. Once this is correctly learned, the

overall graph structure is a simple union bound. Indeed all the papers we

now discuss are of this type. As shown in Table 3.1, Hamilton et al. (2017)

proposed a greedy algorithm to learn pairwise (and higher-order) MRFs with

general alphabet. Their algorithm generalizes the approach of Bresler (2015)

for learning Ising models. The sample complexity in (Hamilton et al., 2017)

grows logarithmically in n, but doubly exponentially in the width λ. Note that

an information-theoretic lower bound for learning Ising models (Santhanam

and Wainwright, 2012) only has a single-exponential dependence on λ. Klivans

and Meka (2017) provided a different algorithmic and theoretical approach by

setting this up as an online learning problem and leveraging results from the

Hedge algorithm therein. Their algorithm Sparsitron achieves single-exponential

dependence on the width λ.

3.1.2 Our Contributions

• Our main result: We show that the `2,1-constrained1 logistic regression

can be used to estimate the edge weights of a discrete pairwise graphical

1It may be possible to prove a similar result for the regularized version of the optimization
problem using techniques from (Negahban et al., 2012). One needs to prove that the objective
function satisfies restricted strong convexity (RSC) when the samples are from a graphical
model distribution (Vuffray et al., 2016; Lokhov et al., 2018). It is interesting to see if the
proof presented here is related to the RSC condition.
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model from i.i.d. samples (see Theorem 3.2.3). For the special case

of Ising models (see Theorem 3.2.1), this reduces to an `1-constrained

logistic regression. We make no incoherence assumption on the graphical

models. As shown in Table 3.1, our sample complexity scales as Õ(k4),

which improves2 the previous best result with Õ(k5) dependency3. The

analysis applies a sharp generalization error bound for logistic regression

when the weight vector has an `2,1 constraint (or `1 constraint) and the

sample vector has an `2,∞ constraint (or `∞ constraint) (see Lemma B.2.1

and Lemma B.2.4 in Appendix B.2). Our key insight is that a general-

ization bound can be used to control the squared distance between the

predicted and true logistic functions (see Lemma 3.3.1 and Lemma 3.3.2

in Section 3.3.2), which then implies an `∞ norm bound between the

weight vectors (see Lemma 3.3.5 and Lemma 3.3.6).

• We show that the proposed algorithms can run in Õ(n2) time without

affecting the statistical guarantees (see Section 3.2.3). Note that Õ(n2) is

an efficient runtime for graph recovery over n nodes. Previous algorithms

2This improvement essentially comes from the fact that we are using an `2,1 norm
constraint instead of an `1 norm constraint for learning general (i.e., non-binary) pairwise
graphical models (see our remark after Theorem 3.2.3). The Sparsitron algorithm proposed
by Klivans and Meka (2017) learns a `1-constrained generalized linear model. This `1-
constraint gives rise to a k5 dependency for learning non-binary pairwise graphical models.

3In an independent and concurrent work, Vuffray et al. (2019) generalize the Interaction
Screening algorithm (Vuffray et al., 2016) to the non-binary alphabet setting as well as
the high-order MRFs. Their sample complexity is O(k4γ̂4 exp(12λ) ln(nk)/η4) for learning
pairwise non-binary graphical models (see Corollary 4 in their paper), where γ̂ is an upper
bound on the `1 norm of the node-wise weight vectors. Since γ̂ can scale as k2λ, their
dependence on k can be much worse than ours.
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in (Hamilton et al., 2017; Klivans and Meka, 2017) also require Õ(n2)

runtime for structure learning of pairwise graphical models.

• We construct examples that violate the incoherence condition proposed

in (Ravikumar et al., 2010) (see Figure 3.1). We then run `1-constrained

logistic regression and show that it can recover the graph structure as

long as given enough samples. This verifies our analysis and shows that

our conditions for graph recovery are weaker than those in (Ravikumar

et al., 2010).

• We empirically compare the proposed algorithm with the Sparsitron

algorithm in (Klivans and Meka, 2017) over different alphabet sizes, and

show that our algorithm needs fewer samples for graph recovery (see

Figure 3.2).

3.1.3 Notation

We use [n] to denote the set {1, 2, · · · , n}. For a vector x ∈ Rn, we use

xi or x(i) to denote its i-th coordinate. The `p norm of a vector is defined as

‖x‖p = (
∑

i |xi|p)1/p. We use x−i ∈ Rn−1 to denote the vector after deleting the

i-th coordinate. For a matrix A ∈ Rn×k, we use Aij or A(i, j) to denote its (i, j)-

th entry. We use A(i, :) ∈ Rk and A(:, j) ∈ Rn to the denote the i-th row vector

and the j-th column vector. The `p,q norm of a matrix A ∈ Rn×k is defined

as ‖A‖p,q = ‖[‖A(1, :)‖p, ..., ‖A(n, :)‖p]‖q. We define ‖A‖∞ = maxij |A(i, j)|

throughout this chapter (note that this definition is different from the induced

matrix norm). We use σ(z) = 1/(1 + e−z) to represent the sigmoid function.
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We use 〈·, ·〉 to represent the dot product between two vectors 〈x, y〉 =
∑

i xiyi

or two matrices 〈A,B〉 =
∑

ij A(i, j)B(i, j).

3.2 Main Results

We start with the special case of binary variables (i.e., Ising models),

and then move to the general case with non-binary variables.

3.2.1 Learning Ising Models

We first give a definition of an Ising model distribution.

Definition 3.2.1. Let A ∈ Rn×n be a symmetric weight matrix with Aii = 0

for i ∈ [n]. Let θ ∈ Rn be a mean-field vector. The n-variable Ising model is a

distribution D(A, θ) on {−1, 1}n that satisfies

P
Z∼D(A,θ)

[Z = z] ∝ exp(
∑

1≤i<j≤n

Aijzizj +
∑
i∈[n]

θizi). (3.1)

The dependency graph of D(A, θ) is an undirected graph G = (V,E), with

vertices V = [n] and edges E = {(i, j) : Aij 6= 0}. The width of D(A, θ) is

defined as

λ(A, θ) = max
i∈[n]

(
∑
j∈[n]

|Aij|+ |θi|). (3.2)

Let η(A, θ) be the minimum edge weight in absolute value, i.e., η(A, θ) =

mini,j∈[n]:Aij 6=0 |Aij|.

One property of an Ising model distribution is that the conditional

distribution of any variable given the rest variables follows a logistic function.
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Let σ(z) = 1/(1 + e−z) be the sigmoid function.

Fact 2. Let Z ∼ D(A, θ) and Z ∈ {−1, 1}n. For any i ∈ [n], the conditional

probability of the i-th variable Zi ∈ {−1, 1} given the states of all other variables

Z−i ∈ {−1, 1}n−1 is

P[Zi = 1|Z−i = x] =
exp(

∑
j 6=iAijxj + θi)

exp(
∑

j 6=iAijxj + θi) + exp(−
∑

j 6=iAijxj − θi)
= σ(〈w, x′〉), (3.3)

where x′ = [x, 1] ∈ {−1, 1}n, and w = 2[Ai1, · · · , Ai(i−1), Ai(i+1), · · · , Ain, θi] ∈

Rn. Moreover, w satisfies ‖w‖1 ≤ 2λ(A, θ), where λ(A, θ) is the model width

defined in Definition 3.2.1.

Following Fact 2, the natural approach to estimating the edge weights

Aij is to solve a logistic regression problem for each variable. For ease of

notation, let us focus on the n-th variable (the algorithm directly applies to the

rest variables). Given N i.i.d. samples {z1, · · · , zN}, where zi ∈ {−1, 1}n from

an Ising model D(A, θ), we first transform the samples into {(xi, yi)}Ni=1, where

xi = [zi1, · · · , zin−1, 1] ∈ {−1, 1}n and yi = zin ∈ {−1, 1}. By Fact 2, we know

that P[yi = 1|xi = x] = σ(〈w∗, x〉) where w∗ = 2[An1, · · · , An(n−1), θn] ∈ Rn

satisfies ‖w∗‖1 ≤ 2λ(A, θ). Suppose that λ(A, θ) ≤ λ, we are then interested in

recovering w∗ by solving the following `1-constrained logistic regression problem

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

`(yi
〈
w, xi

〉
) s.t. ‖w‖1 ≤ 2λ, (3.4)
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where ` : R→ R is the loss function

`(yi
〈
w, xi

〉
) = ln(1 + e−y

i〈w,xi〉) =

{
− lnσ(〈w, xi〉), if yi = 1

− ln(1− σ(〈w, xi〉)), if yi = −1
(3.5)

Eq. (3.5) is essentially the negative log-likelihood of observing yi given xi at

the current w.

Let ŵ be a minimizer of (3.4). It is worth noting that in the high-

dimensional regime (N < n), ŵ may not be unique. In this case, we will show

that any one of them would work. After solving the convex problem in (3.4),

the edge weight is estimated as Ânj = ŵj/2.

The pseudocode of the above algorithm is given in Algorithm 5. Solving

the `1-constrained logistic regression problem will give us an estimator of the

true edge weight. We then form the graph by keeping the edge that has

estimated weight larger than η/2 (in absolute value).

Algorithm 5: Learning an Ising model via `1-constrained logistic
regression

Input: N i.i.d. samples {z1, · · · , zN}, where zm ∈ {−1, 1}n for
m ∈ [N ]; an upper bound on λ(A, θ) ≤ λ; a lower bound on
η(A, θ) ≥ η > 0.

Output: Â ∈ Rn×n, and an undirected graph Ĝ on n nodes.
1 for i← 1 to n do
2 ∀m ∈ [N ], xm ← [zm−i, 1], ym ← zmi
3 ŵ ← arg minw∈Rn

1
N

∑N
m=1 ln(1 + e−y

m〈w,xm〉) s.t. ‖w‖1 ≤ 2λ

4 ∀j ∈ [n], Âij ← ŵj̃/2, where j̃ = j if j < i and j̃ = j − 1 if j > i

5 end

6 Form an undirected graph Ĝ on n nodes with edges

{(i, j) : |Âij| ≥ η/2, i < j}.
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Theorem 3.2.1. Let D(A, θ) be an unknown n-variable Ising model distribution

with dependency graph G. Suppose that the D(A, θ) has width λ(A, θ) ≤ λ.

Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. samples satisfies N =

O(λ2 exp(12λ) ln(n/ρ)/ε4), then with probability at least 1 − ρ, Algorithm 5

produces Â that satisfies

max
i,j∈[n]

|Aij − Âij| ≤ ε. (3.6)

Corollary 3.2.2. In the setup of Theorem 3.2.1, suppose that the Ising model

distribution D(A, θ) has minimum edge weight η(A, θ) ≥ η > 0. If we set

ε < η/2 in (3.6), i.e., the sample complexity N = O(λ2 exp(12λ) ln(n/ρ)/η4),

then with probability at least 1− ρ, Algorithm 5 recovers the dependency graph,

i.e., Ĝ = G.

3.2.2 Learning Pairwise Models Over General Alphabet

Definition 3.2.2. Let k be the alphabet size. Let W = {Wij ∈ Rk×k : i 6=

j ∈ [n]} be a set of weight matrices satisfying Wij = W T
ji . Without loss of

generality, we assume that every row (and column) vector of Wij has zero

mean. Let Θ = {θi ∈ Rk : i ∈ [n]} be a set of external field vectors. Then the

n-variable pairwise graphical model D(W,Θ) is a distribution over [k]n where

P
Z∼D(W,Θ)

[Z = z] ∝ exp(
∑

1≤i<j≤n

Wij(zi, zj) +
∑
i∈[n]

θi(zi)). (3.7)

The dependency graph of D(W,Θ) is an undirected graph G = (V,E), with

vertices V = [n] and edges E = {(i, j) : Wij 6= 0}. The width of D(W,Θ) is
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defined as

λ(W,Θ) = max
i,a

(
∑
j 6=i

max
b∈[k]
|Wij(a, b)|+ |θi(a)|). (3.8)

We define η(W,Θ) = min(i,j)∈E maxa,b |Wij(a, b)|.

Remark. The assumption that Wij has centered rows and columns

(i.e.,
∑

bWij(a, b) = 0 and
∑

aWij(a, b) = 0 for any a, b ∈ [k]) is without loss

of generality (see Fact 8.2 in (Klivans and Meka, 2017)). If the a-th row of Wij

is not centered, i.e.,
∑

bWij(a, b) 6= 0, we can define W ′
ij(a, b) = Wij(a, b) −∑

bWij(a, b)/k and θ′i(a) = θi(a) +
∑

bWij(a, b)/k, and notice that D(W,Θ) =

D(W′,Θ′). Because the sets of matrices with centered rows and columns (i.e.,

{M ∈ Rk×k :
∑

bM(a, b) = 0,∀a ∈ [k]} and {M ∈ Rk×k :
∑

aM(a, b) =

0,∀b ∈ [k]}) are two linear subspaces, alternatively projecting Wij onto the

two sets will converge to the intersection of the two subspaces (Von Neumann,

1949). As a result, the condition of centered rows and columns is necessary for

recovering the underlying weight matrices, since otherwise different parameters

can give the same distribution. Note that in the case of k = 2, Definition 3.2.2

is the same as Definition 3.2.1 for Ising models. To see their connection,

simply define Wij ∈ R2×2 as follows: Wij(1, 1) = Wij(2, 2) = Aij, Wij(1, 2) =

Wij(2, 1) = −Aij.

For a pairwise graphical model distribution D(W,Θ), the conditional

distribution of any variable (when restricted to a pair of values) given all the

other variables follows a logistic function, as shown in Fact 3. This is analogous

to Fact 2 for the Ising model distribution.
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Fact 3. Let Z ∼ D(W,Θ) and Z ∈ [k]n. For any i ∈ [n], any α 6= β ∈ [k],

and any x ∈ [k]n−1,

P[Zi = α|Zi ∈ {α, β}, Z−i = x] = σ(
∑
j 6=i

(Wij(α, xj)−Wij(β, xj))+θi(α)−θi(β)).

(3.9)

Given N i.i.d. samples {z1, · · · , zN}, where zm ∈ [k]n ∼ D(W,Θ) for

m ∈ [N ], the goal is to estimate matrices Wij for all i 6= j ∈ [n]. For ease of

notation and without loss of generality, let us consider the n-th variable. Now

the goal is to estimate matrices Wnj for all j ∈ [n− 1].

To use Fact 3, fix a pair of values α 6= β ∈ [k], let S be the set of samples

satisfying zn ∈ {α, β}. We next transform the samples in S to {(xt, yt)}|S|t=1

as follows: xt = OneHotEncode([zt−n, 1]) ∈ {0, 1}n×k, yt = 1 if ztn = α, and

yt = −1 if ztn = β. Here OneHotEncode(·) : [k]n → {0, 1}n×k is a function that

maps a value t ∈ [k] to the standard basis vector et ∈ {0, 1}k, where et has a

single 1 at the t-th entry. For each sample (x, y) in the set S, Fact 3 implies

that P[y = 1|x] = σ(〈w∗, x〉), where w∗ ∈ Rn×k satisfies

w∗(j, :) = Wnj(α, :)−Wnj(β, :),∀j ∈ [n−1]; w∗(n, :) = [θn(α)−θn(β), 0, ..., 0].

(3.10)

Suppose that the width of D(W,Θ) satisfies λ(W,Θ) ≤ λ, then w∗ defined in

(3.10) satisfies ‖w∗‖2,1 ≤ 2λ
√
k, where ‖w∗‖2,1 :=

∑
j‖w∗(j, :)‖2. We can now

form an `2,1-constrained logistic regression over the samples in S:

wα,β ∈ arg min
w∈Rn×k

1

|S|

|S|∑
t=1

ln(1 + e−y
t〈w,xt〉) s.t. ‖w‖2,1 ≤ 2λ

√
k, (3.11)
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Let wα,β be a minimizer of (3.11). Without loss of generality, we can

assume that the first n − 1 rows of wα,β are centered, i.e.,
∑

aw
α,β(j, a) = 0

for j ∈ [n− 1]. Otherwise, we can always define a new matrix Uα,β ∈ Rn×k by

centering the first n− 1 rows of wα,β:

Uα,β(j, b) = wα,β(j, b)− 1

k

∑
a∈[k]

wα,β(j, a), ∀j ∈ [n− 1], ∀b ∈ [k]; (3.12)

Uα,β(n, b) = wα,β(n, b) +
1

k

∑
j∈[n−1],a∈[k]

wα,β(j, a), ∀b ∈ [k].

Since each row of the x matrix in (3.11) is a standard basis vector (i.e., all

zeros except a single one),
〈
Uα,β, x

〉
=
〈
wα,β, x

〉
, which implies that Uα,β is

also a minimizer of (3.11).

The key step in our proof is to show that given enough samples, the

obtained Uα,β ∈ Rn×k matrix is close to w∗ defined in (3.10). Specifically, we

will prove that

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, β, b ∈ [k]. (3.13)

Recall that our goal is to estimate the original matrices Wnj for all j ∈ [n− 1].

Summing (3.13) over β ∈ [k] (suppose Uα,α = 0) and using the fact that∑
βWnj(β, b) = 0 gives

|Wnj(α, b)−
1

k

∑
β∈[k]

Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, b ∈ [k]. (3.14)

In other words, Ŵnj(α, :) =
∑

β∈[k] U
α,β(j, :)/k is a good estimate of Wnj(α, :).
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Suppose that η(W,Θ) ≥ η, once we obtain the estimates Ŵij, the last

step is to form a graph by keeping the edge (i, j) that satisfies maxa,b |Ŵij(a, b)| ≥

η/2. The pseudocode of the above algorithm is given in Algorithm 6.

Algorithm 6: Learning a pairwise graphical model via `2,1-
constrained logistic regression

Input: alphabet size k; N i.i.d. samples {z1, · · · , zN}, where
zm ∈ [k]n for m ∈ [N ]; an upper bound on λ(W,Θ) ≤ λ; a
lower bound on η(W,Θ) ≥ η > 0.

Output: Ŵij ∈ Rk×k for all i 6= j ∈ [n]; an undirected graph Ĝ on
n nodes.

1 for i← 1 to n do
2 for each pair α 6= β ∈ [k] do
3 S ← {zm,m ∈ [N ] : zmi ∈ {α, β}}.
4 for zt ∈ S do
5 xt ← OneHotEncode([zt−i, 1]).
6 yt ← 1 if zti = α; yt ← −1 if zti = β.

7 end

8 wα,β ← arg minw∈Rn×k
1
|S|
∑|S|

t=1 ln(1 + e−y
t〈w,xt〉)

9 s.t. ‖w‖2,1 ≤ 2λ
√
k.

10 Define Uα,β ∈ Rn×k by centering the first n− 1 rows of wα,β

(see (3.12)).

11 end
12 for j ∈ [n]\i and α ∈ [k] do

13 Ŵij(α, :)← 1
k

∑
β∈[k] U

α,β(j̃, :), where j̃ = j if j < i and

j̃ = j − 1 if j > i.

14 end

15 end

16 Form graph Ĝ on n nodes with edges

{(i, j) : maxa,b |Ŵij(a, b)| ≥ η/2, i < j}.

Theorem 3.2.3. Let D(W,Θ) be an n-variable pairwise graphical model dis-

tribution with width λ(W,Θ) ≤ λ. Given ρ ∈ (0, 1) and ε > 0, if the number of
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i.i.d. samples satisfies N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then with probability

at least 1− ρ, Algorithm 6 produces Ŵij ∈ Rk×k that satisfies

|Wij(a, b)− Ŵij(a, b)| ≤ ε, ∀i 6= j ∈ [n], ∀a, b ∈ [k]. (3.15)

Corollary 3.2.4. In the setup of Theorem 3.2.3, suppose that the pairwise

graphical model distribution D(W,Θ) satisfies η(W,Θ) ≥ η > 0. If we set ε <

η/2 in (3.15), i.e., the sample complexity N = O(λ2k4 exp(14λ) ln(nk/ρ)/η4),

then with probability at least 1− ρ, Algorithm 6 recovers the dependency graph,

i.e., Ĝ = G.

Remark. The w∗ ∈ Rn×k matrix defined in (3.10) satisfies ‖w∗‖∞,1 ≤

2λ(W,Θ). This implies that ‖w∗‖2,1 ≤ 2λ(W,Θ)
√
k and ‖w∗‖1 ≤ 2λ(W,Θ)k.

Instead of solving the `2,1-constrained logistic regression defined in (3.11),

we could solve an `1-constrained logistic regression with ‖w‖1 ≤ 2λ(W,Θ)k.

However, this will lead to a sample complexity that scales as Õ(k5), which

is worse than the Õ(k4) sample complexity achieved by the `2,1-constrained

logistic regression. The reason why we use the `2,1 constraint instead of the

tighter `∞,1 constraint in the algorithm is because our proof relies on a sharp

generalization bound for `2,1-constrained logistic regression (see Lemma B.2.4

in the appendix). It is unclear whether a similar generalization bound exists

for the `∞,1 constraint.
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3.2.3 Learning Pairwise Models in Õ(n2) Time

Our results so far assume that the `1-constrained logistic regression (in

Algorithm 5) and the `2,1-constrained logistic regression (in Algorithm 6) can

be solved exactly. This would require Õ(n4) complexity if an interior-point

based method is used (Koh et al., 2007). The goal of this section is to reduce

the runtime to Õ(n2) via first-order optimization method. Note that Õ(n2)

is an efficient time complexity for graph recovery over n nodes. Previous

structural learning algorithms of Ising models require either Õ(n2) complexity

(e.g., (Bresler, 2015; Klivans and Meka, 2017)) or a worse complexity (e.g.,

(Ravikumar et al., 2010; Vuffray et al., 2016) require Õ(n4) runtime). We

would like to remark that our goal here is not to give the fastest first-order

optimization algorithm (see our remark after Theorem 3.2.6). Instead, our

contribution is to provably show that it is possible to run Algorithm 5 and

Algorithm 6 in Õ(n2) time without affecting the original statistical guarantees.

To better exploit the problem structure4, we use the mirror descent

algorithm5 with a properly chosen distance generating function (aka the mirror

4Specifically, for the `1-constrained logisitic regression defined in (3.4), since the input
sample satisifies ‖x‖∞ = 1, the loss function is O(1)-Lipschitz w.r.t. ‖·‖1. Similarly, for the
`2,1-constrained logisitic regression defined in (3.11), the loss function is O(1)-Lipschitz w.r.t.
‖·‖2,1 because the input sample satisfies ‖x‖2,∞ = 1.

5Other approaches include the standard projected gradient descent and the coordinate
descent. Their convergence rates depend on either the smoothness or the Lipschitz constant
(w.r.t. ‖·‖2) of the objective function (Bubeck, 2015). This would lead to a total runtime
of Õ(n3) for our problem setting. Another option would be the composite gradient descent
method, the analysis of which relies on the restricted strong convexity of the objective
function (Agarwal et al., 2010). For other variants of mirror descent algorithms, see the
remark after Theorem 3.2.6.
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map). Following the standard mirror descent setup, we use negative entropy as

the mirror map for `1-constrained logistic regression and a scaled group norm

for `2,1-constrained logistic regression (see Section 5.3.3.2 and Section 5.3.3.3

in (Ben-Tal and Nemirovski, 2013) for more details). The pseudocode is given

in Appendix B.8. The main advantage of mirror descent algorithm is that

its convergence rate scales logarithmically in the dimension (see Lemma B.9.1

in Appendix B.9). Specifically, let w̄ be the output after O(ln(n)/γ2) mirror

descent iterations, then w̄ satisfies

L̂(w̄)− L̂(ŵ) ≤ γ, (3.16)

where L̂(w) =
∑N

i=1 ln(1 + e−y
i〈w,xi〉)/N is the empirical logistic loss, and ŵ

is the actual minimizer of L̂(w). Since each mirror descent update requires

O(nN) time, where N is the number of samples and scales as O(ln(n)), and

we have to solve n regression problems (one for each variable in [n]), the total

runtime scales as Õ(n2), which is our desired runtime.

There is still one problem left, that is, we have to show that ‖w̄−w∗‖∞ ≤

ε (where w∗ is the minimizer of the true loss L(w) = E(x,y)∼D ln(1 + e−y〈w,x〉))

in order to conclude that Theorem 3.2.1 and 3.2.3 still hold when using mirror

descent algorithms. Since L̂(w) is not strongly convex, (3.16) alone does not

necessarily imply that ‖w̄ − ŵ‖∞ is small. Our key insight is that in the proof

of Theorem 3.2.1 and 3.2.3, the definition of ŵ (as a minimizer of L̂(w)) is only

used to show that L̂(ŵ) ≤ L̂(w∗) (see inequality (b) of (B.10) in Appendix B.2).

It is then possible to replace this step with (3.16) in the original proof, and
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prove that Theorem 3.2.1 and 3.2.3 still hold as long as γ is small enough (see

(B.41) in Appendix B.9).

Our key results in this section are Theorem 3.2.5 and Theorem 3.2.6,

which show that Algorithm 5 and Algorithm 6 can run in Õ(n2) time without

affecting the original statistical guarantees.

Theorem 3.2.5. In the setup of Theorem 3.2.1, suppose that the `1-constrained

logistic regression in Algorithm 5 is optimized by the mirror descent method

(Algorithm 8) given in Appendix B.8. Given ρ ∈ (0, 1) and ε > 0, if the

number of mirror descent iterations satisfies T = O(λ2 exp(12λ) ln(n)/ε4), and

the number of i.i.d. samples satisfies N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then

(3.6) still holds with probability at least 1 − ρ. The total time complexity of

Algorithm 5 is O(TNn2).

Theorem 3.2.6. In the setup of Theorem 3.2.3, suppose that the `2,1-constrained

logistic regression in Algorithm 6 is optimized by the mirror descent method

(Algorithm 9) given in Appendix B.8. Given ρ ∈ (0, 1) and ε > 0, if the number

of mirror descent iterations satisfies T = O(λ2k3 exp(12λ) ln(n)/ε4), and the

number of i.i.d. samples satisfies N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then

(3.15) still holds with probability at least 1− ρ. The total time complexity of

Algorithm 6 is O(TNn2k2).

Remark. It is possible to improve the time complexity given in Theo-

rem 3.2.5 and 3.2.6 (especially the dependence on ε and λ), by using stochastic

or accelerated versions of mirror descent algorithms (instead of the batch
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version given in Appendix B.8). In fact, the Sparsitron algorithm proposed

by Klivans and Meka (2017) can be seen as an online mirror descent algo-

rithm for optimizing the `1-constrained logistic regression (see Algorithm 8 in

Appendix B.8). Furthermore, Algorithm 5 and 6 can be parallelized as the

regression problem is defined separately for each variable.

3.3 Analysis

3.3.1 Proof Outline

We give a proof outline for Theorem 3.2.1. The proof of Theorem 3.2.3

follows a similar outline. Let D be a distribution over {−1, 1}n×{−1, 1}, where

(x, y) ∼ D satisfies P[y = 1|x] = σ(〈w∗, x〉). Let L(w) = E(x,y)∼D ln(1+e−y〈w,x〉)

and L̂(w) =
∑N

i=1 ln(1 + e−y
i〈w,xi〉)/N be the expected and empirical logistic

loss. Suppose ‖w∗‖1 ≤ 2λ. Let ŵ ∈ arg minw L̂(w) s.t. ‖w‖1 ≤ 2λ. Our goal

is to prove that ‖ŵ−w∗‖∞ is small when the samples are constructed from an

Ising model distribution. Our proof can be summarized in three steps:

1. If the number of samples satisfies N = O(λ2 ln(n/ρ)/γ2), then L(ŵ)−

L(w∗) ≤ O(γ). This is obtained using a sharp generalization bound when

‖w‖1 ≤ 2λ and ‖x‖∞ ≤ 1 (see Lemma B.2.1 in Appendix B.2).

2. For any w, we show that L(w) − L(w∗) ≥ Ex[σ(〈w, x〉) − σ(〈w∗, x〉)]2

(see Lemma B.2.3 and Lemma B.2.2 in Appendix B.2). Hence, Step 1

implies that Ex[σ(〈ŵ, x〉)− σ(〈w∗, x〉)]2 ≤ O(γ) (see Lemma 3.3.1 in the

next subsection).
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3. We now use a result from (Klivans and Meka, 2017) (see Lemma 3.3.5 in

the next subsection), which says that if the samples are from an Ising

model and if γ = O(ε2 exp(−6λ)), then Ex[σ(〈ŵ, x〉) − σ(〈w∗, x〉)]2 ≤

O(γ) implies that ‖ŵ − w∗‖∞ ≤ ε. The required number of samples is

N = O(λ2 ln(n/ρ)/γ2) = O(λ2 exp(12λ) ln(n/ρ)/ε4).

For the general setting with non-binary alphabet (i.e., Theorem 3.2.3),

the proof is similar to that of Theorem 3.2.1. The main difference is that we

need to use a sharp generalization bound when ‖w‖2,1 ≤ 2λ
√
k and ‖x‖2,∞ ≤ 1

(see Lemma B.2.4 in Appendix B.2). This would give us Lemma 3.3.2 (instead

of Lemma 3.3.1 for the Ising models). The last step is to use Lemma 3.3.6 to

bound the infinity norm between the two weight matrices.

3.3.2 Supporting Lemmas

Lemma 3.3.1 and Lemma 3.3.2 are the key results in our proof. They

essentially say that given enough samples, solving the corresponding constrained

logistic regression problem will provide a prediction σ(〈ŵ, x〉) close to the true

σ(〈w∗, x〉) in terms of their expected squared distance.

Lemma 3.3.1. Let D be a distribution on {−1, 1}n × {−1, 1} where for

(X, Y ) ∼ D, P[Y = 1|X = x] = σ(〈w∗, x〉). We assume that ‖w∗‖1 ≤ 2λ

for a known λ ≥ 0. Given N i.i.d. samples {(xi, yi)}Ni=1, let ŵ be any mini-

mizer of the following `1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (3.17)
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Given ρ ∈ (0, 1) and ε > 0, if the number of samples satisfies

N = O(λ2 ln(n/ρ)/ε2), (3.18)

then with probability at least 1 − ρ over the samples, E(x,y)∼D[(σ(〈w∗, x〉) −

σ(〈ŵ, x〉))2] ≤ ε.

Lemma 3.3.2. Let D be a distribution on X × {−1, 1}, where X = {x ∈

{0, 1}n×k : ‖x‖2,∞ ≤ 1}. Furthermore, (X, Y ) ∼ D satisfies P[Y = 1|X = x] =

σ(〈w∗, x〉), where w∗ ∈ Rn×k. We assume that ‖w∗‖2,1 ≤ 2λ
√
k for a known

λ ≥ 0. Given N i.i.d. samples {(xi, yi)}Ni=1 from D, let ŵ be any minimizer of

the following `2,1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn×k

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤ 2λ

√
k. (3.19)

Given ρ ∈ (0, 1) and ε > 0, if the number of samples satisfies

N = O(λ2k(ln(n/ρ))/ε2), (3.20)

then with probability at least 1 − ρ over the samples, E(x,y)∼D[(σ(〈w∗, x〉) −

σ(〈ŵ, x〉))2] ≤ ε.

The proofs of Lemma 3.3.1 and Lemma 3.3.2 are given in Appendix B.2.

Note that in the setup of both lemmas, we form a pair of dual norms for

x and w, e.g., ‖x‖2,∞ and ‖w‖2,1 in Lemma 3.3.2, and ‖x‖∞ and ‖w‖1 in

Lemma 3.3.1. This duality allows us to use a sharp generalization bound with

a sample complexity that scales logarithmic in the dimension (see Lemma B.2.1

and Lemma B.2.4 in Appendix B.2).
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Definition 3.3.1 defines a δ-unbiased distribution. This notion of δ-

unbiasedness is proposed by Klivans and Meka (2017).

Definition 3.3.1. Let S be the alphabet set, e.g., S = {−1, 1} for Ising

model and S = [k] for an alphabet of size k. A distribution D on Sn is

δ-unbiased if for X ∼ D, any i ∈ [n], and any assignment x ∈ Sn−1 to X−i,

minα∈S(P[Xi = α|X−i = x]) ≥ δ.

For a δ-unbiased distribution, any of its marginal distribution is also

δ-unbiased (see Lemma 3.3.3).

Lemma 3.3.3. Let D be a δ-unbiased distribution on Sn, where S is the

alphabet set. For X ∼ D, any i ∈ [n], the distribution of X−i is also δ-unbiased.

Lemma 3.3.4 describes the δ-unbiased property of graphical models.

This property has been used in the previous papers (e.g., (Klivans and Meka,

2017; Bresler, 2015)).

Lemma 3.3.4. Let D(W,Θ) be a pairwise graphical model distribution with

alphabet size k and width λ(W,Θ). Then D(W,Θ) is δ-unbiased with δ =

e−2λ(W,Θ)/k. Specifically, an Ising model distribution D(A, θ) is e−2λ(A,θ)/2-

unbiased.

In Lemma 3.3.1 and Lemma 3.3.2, we give a sample complexity bound

for achieving a small `2 error between σ(〈ŵ, x〉) and σ(〈w∗, x〉). The following
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two lemmas show that if the sample distribution is δ-unbiased, then a small `2

error implies a small distance between ŵ and w∗.

Lemma 3.3.5. Let D be a δ-unbiased distribution on {−1, 1}n. Suppose that

for two vectors u,w ∈ Rn and θ′, θ′′ ∈ R, EX∼D[(σ(〈w,X〉 + θ′) − σ(〈u,X〉 +

θ′′))2] ≤ ε, where ε < δe−2‖w‖1−2|θ′|−6. Then ‖w−u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·
√
ε/δ.

Lemma 3.3.6. Let D be a δ-unbiased distribution on [k]n. For X ∼ D, let

X̃ ∈ {0, 1}n×k be the one-hot encoded X. Let u,w ∈ Rn×k be two matrices

satisfying
∑

a u(i, a) = 0 and
∑

aw(i, a) = 0, for i ∈ [n]. Suppose that for some

u,w and θ′, θ′′ ∈ R, we have EX∼D[(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2] ≤ ε,

where ε < δe−2‖w‖∞,1−2|θ′|−6. Then6 ‖w − u‖∞ ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

The proofs of Lemma 3.3.5 and Lemma 3.3.6 can be found in (Klivans

and Meka, 2017) (see Claim 8.6 and Lemma 4.3 in their paper). We give a

slightly different proof of these two lemmas in Appendix B.5.

3.3.3 Proof Sketches

We provide proof sketches for Theorem 3.2.1 and Theorem 3.2.3 using

the supporting lemmas. The detailed proof can be found in Appendix B.6

and B.7.

6For a matrix w, we define ‖w‖∞ = maxij |w(i, j)|. Note that this is different from the
induced matrix norm.
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Proof sketch of Theorem 3.2.1. Without loss of generality, let us

consider the n-th variable. Let Z ∼ D(A, θ), and X = [Z1, Z2, · · · , Zn−1, 1] ∈

{−1, 1}n. By Fact 2 and Lemma 3.3.1, if N = O(λ2 ln(n/ρ)/γ2), then

EX [(σ(〈w∗, X〉) − σ(〈ŵ,X〉))2] ≤ γ with probability at least 1 − ρ/n. By

Lemma 3.3.4 and Lemma 3.3.3, Z−n is δ-unbiased with δ = e−2λ/2. We can

then apply Lemma 3.3.5 to show that if N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then

maxj∈[n] |Anj − Ânj| ≤ ε with probability at least 1− ρ/n. Theorem 3.2.1 then

follows by a union bound over all n variables.

Proof sketch of Theorem 3.2.3. Let us again consider the n-th

variable since the proof is the same for all other variables. As described before,

the key step is to show that (3.13) holds. Now fix a pair of α 6= β ∈ [k], let Nα,β

be the number of samples such that the n-th variable is either α or β. By Fact 3

and Lemma 3.3.2, if Nα,β = O(λ2k ln(n/ρ′)/γ2), then with probability at least

1 − ρ′, the matrix Uα,β ∈ Rn×k satisfies Ex[(σ(〈w∗, x〉) − σ(
〈
Uα,β, x

〉
))2] ≤ γ,

where w∗ ∈ Rn×k is defined in (3.10). By Lemma 3.3.6 and Lemma 3.3.4, if

Nα,β = O(λ2k3 exp(12λ) ln(n/ρ′))/ε4), then with probability at least 1 − ρ′,

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀b ∈ [k]. Since D(W,Θ)

is δ-unbiased with δ = e−2λ/k, in order to have Nα,β samples for a given

(α, β) pair, we need the total number of samples to satisfy N = O(Nα,β/δ).

Theorem 3.2.3 then follows by setting ρ′ = ρ/(nk2) and taking a union bound

over all (α, β) pairs and all n variables.
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3.4 Experiments

In all the experiments, we assume that the external field is zero. Sam-

pling is done via exactly computing the distribution.

3.4.1 Learning Ising Models

In Figure 3.1 we construct a diamond-shape graph and show that the

incoherence value at Node 1 becomes bigger than 1 (and hence violates the

incoherence condition in (Ravikumar et al., 2010)) when we increase the graph

size n and edge weight a. We then run 100 times of Algorithm 5 and plot the

fraction of runs that exactly recovers the underlying graph structure. In each

run we generate a different set of samples. The result shown in Figure 3.1 is

consistent with our analysis and also indicates that our conditions for graph

recovery are weaker than those in (Ravikumar et al., 2010).
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Figure 3.1: Left: The graph structure used in this simulation. It has n
nodes and 2(n − 2) edges. Every edge has the same weight a > 0. Middle:
Incoherence value at Node 1. Right: We simulate 100 runs of Algorithm 5 for
the diamond graph with edge weight a = 0.2.
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3.4.2 Learning General Pairwise Graphical Models

We compare our algorithm (Algorithm 6) with the Sparsitron algorithm

in (Klivans and Meka, 2017) on a two-dimensional 3-by-3 grid (shown in

Figure 3.2). We experiment two alphabet sizes: k = 4, 6. For each value of k,

we simulate both algorithms 100 runs, and in each run we generate random Wij

matrices with entries ±0.2. As shown in the Figure 3.2, our algorithm requires

fewer samples for successfully recovering the graphs. More details about this

experiment can be found in Appendix B.10.
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Figure 3.2: Left: A two-dimensional 3-by-3 grid graph used in the simulation.
Middle and right: Our algorithm needs fewer samples than the Sparsitron
algorithm for graph recovery.

3.5 Conclusion

The main contribution of this project is to theoretically prove the state-

of-the-art performance of an existing and popular algorithm (i.e., properly

regularized logistic regression), in a setting where alternative algorithms are

being proposed. Specifically, we have shown that the `2,1-constrained logistic
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regression can recover the Markov graph of any discrete pairwise graphical

model from i.i.d. samples. For the Ising model, it reduces to the `1-constrained

logistic regression. This algorithm has better sample complexity than the

previous state-of-the-art result (k4 versus k5), and can run in Õ(n2) time. One

interesting direction for future work is to see if the 1/η4 dependency in the

sample complexity can be improved.

Another interesting direction is to consider MRFs with higher-order

interactions. Intuitively, it should not be difficult to prove that `1-constrained

logistic regression can recover the structure of binary t-wise MRFs. One can

prove it by combining results from Section 7 of (Klivans and Meka, 2017)

and the following fact: the Sparsitron algorithm can be viewed as an online

mirror descent algorithm that approximately solves an `1-constrained logistic

regression. This observation is actually the starting point of this project. For

higher-order MRFs with non-binary alphabet, we conjecture that similar result

can be proved for group-sparse regularized logistic regression.

Finally, it is interesting to see a large-scale empirical evaluation of

different structural learning algorithms. The biggest challenge with large-

scale simulation is that efficiently sampling from large graphical models is

difficult. In our experiments, the samples are generated as follows: 1) We

first exactly compute the probability distribution defined by a graphical model

with n variables and alphabet size k; 2) We then sample from this probability

distribution. Because the distribution contains kn probabilities, the above

sampling procedure is only possible for small n and k. When n is large (e.g.,
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n ∼ 100), exactly computing the probability distribution is impossible. In

that case, Gibbs sampling needs to be used, but its mixing time can be very

large (Bento and Montanari, 2009).
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Chapter 4

Learning Compressed Sensing Measurement

Matrix

4.1 Introduction

Assume we have some unknown data vector x ∈ Rd. We can observe

only a few (m < d) linear equations of its entries and we would like to design

these projections by creating a measurement matrix A ∈ Rm×d such that the

projections y = Ax allow exact (or near-exact) recovery of the original vector

x ∈ Rd .

If d > m, this is an ill-posed problem in general: we are observing m

linear equations with d unknowns, so any vector x′ on the subspace Ax′ = y

satisfies our observed measurements. In this high-dimensional regime, the only

hope is to make a structural assumption on x, so that unique reconstruction is

possible. A natural approach is to assume that the data vector is sparse. The

problem of designing measurement matrices and reconstruction algorithms that

recover sparse vectors from linear observations is called Compressed Sensing

Chapter 4 is based on material from (Wu et al., 2019b). The author of this dissertation
is the leading author of (Wu et al., 2019b), and contributed to the idea, the analysis, the
implementation and experiments, and the writing of the paper. Source code can be found at
https://github.com/wushanshan/L1AE.
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(CS), Sparse Approximation or Sparse Recovery Theory (Donoho, 2006; Candès

et al., 2006).

A natural way to recover is to search for the sparsest solution that

satisfies the linear measurements:

arg min
x′∈Rd
‖x′‖0 s.t. Ax′ = y. (4.1)

Unfortunately this problem is NP-hard and for that reason the `0 norm is

relaxed into an `1-norm minimization1

D(A, y) := arg min
x′∈Rd
‖x′‖1 s.t. Ax′ = y. (4.2)

Remarkably, if the measurement matrix A satisfies some properties (e.g.

Restricted Isometry Property (RIP) (Candès, 2008) or the nullspace condition

(NSP) (Rauhut, 2010)) it is possible to prove that the `1 minimization in (4.2)

produces the same output as the intractable `0 minimization in (4.1). However,

it is NP-hard to test whether a matrix satisfies RIP (Bandeira et al., 2013).

In this project, we are interested in vectors that are not only sparse but

have additional structure in their support. This extra structure may not be

known or a-priori specified. We propose a data-driven algorithm that learns a

good linear measurement matrix A from data samples. Our linear measurements

are subsequently decoded with the `1-minimization in (4.2) to estimate the

unknown vector x.

1Other examples are greedy (Tropp and Gilbert, 2007), and iterative algorithms, e.g.,
CoSaMP (Needell and Tropp, 2009), IHT (Blumensath and Davies, 2009), and AMP (Donoho
et al., 2009).

66



Many real-world sparse datasets have additional structures beyond

simple sparsity. For example, in a demographic dataset with (one-hot encoded)

categorical features, a person’s income level may be related to their education.

Similarly, in a text dataset with bag-of-words representation, it is much more

likely for two related words (e.g., football and game) to appear in the same

document than two unrelated words (e.g., football and biology). A third

example is that in a genome dataset, certain groups of gene features may be

correlated. In this project, the goal is to learn a measurement matrix A to

leverage such additional structure.

Our method is an autoencoder for sparse data, with a linear encoder

(the measurement matrix) and a complex non-linear decoder that solves an

optimization problem. The latent code is the measurement y ∈ Rm which forms

the bottleneck of the autoencoder that makes the representation interesting. A

popular data-driven dimensionality reduction method is Principal Components

Analysis (PCA) (see e.g., (Hotelling, 1933; Boutsidis et al., 2015; Wu et al.,

2016; Li et al., 2017) and the references therein). PCA is also an autoencoder

where both the encoder and decoder are linear and learned from samples.

Given a data matrix X ∈ Rn×d (each row is a sample), PCA projects each data

point x ∈ Rd onto the subspace spanned by the top right-singular vectors of

X. As is well-known, PCA provides the lowest mean-squared error when used

with a linear decoder. However, when the data is sparse, non-linear recovery

algorithms like (4.2) can yield significantly better recovery performance.

In this project, we focus on learning a linear encoder for sparse data.
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Compared to non-linear embedding methods such as kernel PCA (Mika et al.,

1999), a linear method enjoys two broad advantages: 1) it is easy to compute,

as it only needs a matrix-vector multiplication; 2) it is easy to interpret, as

every column of the encoding matrix can be viewed as a feature embedding.

Interestingly, Arora et al. (2018) recently observe that the pre-trained word

embeddings such as GloVe and word2vec (Mikolov et al., 2013; Pennington

et al., 2014) form a good measurement matrix for text data. Those measurement

matrices, when used with `1-minimization, need fewer measurements than the

random matrices to achieve near-perfect recovery.

Given a sparse dataset that has additional (but unknown) structure,

our goal is to learn a good measurement matrix A, when the recovery algo-

rithm is the `1-minimization in (4.2). More formally, given n sparse samples

x1, x2, · · · , xn ∈ Rd, our problem of finding the best A can be formulated as

min
A∈Rm×d

f(A), where f(A) :=
n∑
i=1

‖xi −D(A,Axi)‖2
2. (4.3)

Here D(·, ·) is the `1 decoder defined in (4.2). Unfortunately, there is no easy

way to compute the gradient of f(A) with respect to A, due to the optimization

problem defining D(·, ·). Our main insight, which will be elaborated on in

Section 4.3.1, is that replacing the `1-minimization with a T -step pro-

jected subgradient update of it, results in gradients being (approximately)

computable. In particular, consider the approximate function f̃(A) : Rm×d 7→ R
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defined as

f̃(A) :=
n∑
i=1

‖xi − x̂i‖2
2, where

x̂i = T -step projected subgradient of

D(A,Axi), for i = 1, · · · , n.

(4.4)

As we will show, now it is possible to compute the gradients of f̃(A) with

respect to A. This is idea is sometimes called unrolling and has appeared in

various other applications as we discuss in the related work section. To the

best of our knowledge, we are the first to use unrolling to learn a measurement

matrix for compressed sensing.

4.1.1 Our Contributions

• We design a novel autoencoder, called `1-AE , to learn an efficient and

compressed representation for structured sparse vectors. Our autoencoder

is easy to train and has only two tuning hyper-parameters associated with

the network architecture: the encoding dimension m and the network

depth T . The architecture of `1-AE is inspired by the projected subgra-

dient method of solving the `1-minimization in (4.2). While the exact

projected subgradient method requires computing the pseudoinverse, we

circumvent this by observing that it is possible to replace the expensive

pseudoinverse operation by a simple transpose (see Lemma 4.3.1).

• The most surprising result in this project is that we can learn a linear

encoder using an unfolded T -step projected subgradient decoder and

the learned measurement matrix still performs well for the original `1-
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minimization decoder. We empirically compare 10 algorithms over 6

sparse datasets (3 synthetic and 3 real). As shown in Figure 4.2 and

Figure 4.3, using the measurement matrix learned from our autoencoder,

we can compress the sparse vectors (in the test set) to a lower dimension

(by a factor of 1.1-3x) than random Gaussian matrices while still being

able to perfectly recover the original sparse vectors (see also Table 4.3).

This demonstrates the superior ability of our autoencoder in learning and

adapting to the additional structures in the given data.

• Although our autoencoder is specifically designed for `1-minimization

decoder, the learned measurement matrix also performs well (and can

perform even better) with the model-based decoder (Baraniuk et al.,

2010) (Figure 4.4). This further demonstrates the benefit of learning

a measurement matrix from data. As a baseline algorithm, we slightly

modify the original model-based CoSaMP algorithm by adding a positivity

constraint without changing the theoretical guarantee (Appendix C.3),

which could be of independent interest.

• Besides the application in compressed sensing, one interesting direction

for furture research is to use the proposed autoencoder `1-AE in other

supervised tasks. We illustrate a potential application of `1-AE in extreme

multi-label learning. We show that `1-AE can be used to learn label

embeddings for multi-label datasets. We compare the resulted method

with one of the state-of-the-art embedding-based methods SLEEC (Bhatia
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et al., 2015) over two benchmark datasets. Our method is able to achieve

better or comparable precision scores than SLEEC (see Table 4.5).

4.1.2 Notation

We use the uppercase letters to denote matrices and the lowercase letters

to denote vectors and scalars. Let A† denote the Moore-Penrose inverse of

matrix A, and AT denote the transpose. The `p-norm (p > 0) of a vector

x ∈ Rd is defined as ‖x‖p = (
∑d

i=1 x
p
i )

1/p, where xi is the i-th coordinate. We

use I to denote an identity matrix.

4.2 Related Work

We briefly review the relevant work, and highlight the differences com-

pared to our work.

Model-based compressed sensing (CS). Model-based CS (Bara-

niuk et al., 2010; Hegde et al., 2014) extends the conventional compressed

sensing theory by considering more realistic structured models than simple

sparsity. It requires to know the sparsity structure a priori, which is not always

possible in practice. Our approach, by contrast, does not require a priori

knowledge about the sparsity structure.

Learning-based measurement design. Most theoretical results in

CS are based on random measurement matrices. There are a few approaches

proposed to learn a measurement matrix from training data. One approach is

to learn a near-isometric embedding that preserves pairwise distance (Hegde
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et al., 2015; Bah et al., 2013). This approach usually requires computing the

pairwise difference vectors, and hence is computationally expensive if both

the number of training samples and the dimension are large (which is the

setting that we are interested in). Another approach restricts the form of

the measurement matrix, e.g., matrices formed by a subset of rows of a given

basis matrix. The learning problem then becomes selecting the best subset of

rows (Baldassarre et al., 2016; Li and Cevher, 2016; Gözcü et al., 2018). In

Figure 4.2 and Figure 4.3, we compare our method with the learning-based

subsampling method proposed in (Baldassarre et al., 2016), and show that our

method needs fewer measurements to recover the original sparse vector.

Adaptive CS. In adaptive CS (Seeger and Nickisch, 2011; Arias-Castro

et al., 2013; Malloy and Nowak, 2014), the new measurement is designed based

on the previous measurements in order to maximize the the gain of new

information. This is in contrast to our setting, where we are given a set of

training samples. Our goal is to learn a good measurement matrix to leverage

additional structure in the given samples.

Dictionary learning. Dictionary learning (Aharon et al., 2006; Mairal

et al., 2009) is the problem of learning an overcomplete set of basis vectors

from data so that every datapoint (presumably dense) can be represented as

a sparse linear combination of the basis vectors. By contrast, we focus on

learning a good measurement matrix for structured sparse data.

Sparse coding. The goal of sparse coding (Olshausen and Field, 1996;

Donoho and Elad, 2003) is to find the sparse representation of a dense vector,
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given a fixed family of basis vectors (aka a dictionary). Training a deep neural

network to compute the sparse codes becomes popular recently (Gregor and

LeCun, 2010; Sprechmann et al., 2015; Wang et al., 2016). Several recent papers

(see, e.g., (Kulkarni et al., 2016; Xin et al., 2016; Shi et al., 2017; Jin et al., 2017;

Mardani et al., 2017; Mousavi et al., 2017, 2019, 2015; Mousavi and Baraniuk,

2017; He et al., 2017; Zhang and Ghanem, 2018; Lohit et al., 2018) and the

references therein) proposes new convolutional neural network architectures

for image reconstruction from low-dimensional measurements. Note that some

architectures such as (Lohit et al., 2018; Shi et al., 2017; Mousavi et al., 2015,

2017, 2019) also have an image sensing component, and hence the overall

architecture becomes an autoencoder. Sparse coding is different from our

problem, because we focus on learning a good measurement/encoding matrix

rather than learning a good recovery/decoding algorithm.

Autoencoders. An autoencoder is a popular neural network archi-

tecture for unsupervised learning. It has applications in dimensionality re-

duction (Hinton and Salakhutdinov, 2006), pre-training (Erhan et al., 2010),

image compression and recovery (Lohit et al., 2018; Mousavi et al., 2015, 2017,

2019), denoising (Vincent et al., 2010), and generative modeling (Kingma and

Welling, 2014). In this project we design a novel autoencoder `1-AE to learn

a compressed sensing measurement matrix for the `1 decoder. We focus on

high-dimensional sparse (non-image) data such as the categorical data and

bag-of-words data (see Table 4.1).
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Unrolling. The idea of unfolding an iterative algorithm (e.g., gradient

descent of an optimization problem) into a neural network structure is a natural

way of making the algorithm trainable (see, e.g., (Gregor and LeCun, 2010;

Hershey et al., 2014; Sprechmann et al., 2015; Xin et al., 2016; Wang et al., 2016;

Shi et al., 2017; Jin et al., 2017; Mardani et al., 2017; He et al., 2017; Zhang

and Ghanem, 2018) and references therein). The main difference between the

previous papers and our problem is that, the previous papers seek a trained

neural network as a replacement of the original optimization-based algorithm,

while here we design an autoencoder based on the unrolling idea, and after

training, we show that the learned measurement matrix still performs well with

the original `1-minimization decoder.

Extreme multi-label learning (XML). The goal of XML is to learn

a classifier to identify (for each datapoint) a subset of relevant labels from a

extreme large label set. Different approaches have been proposed for XML,

e.g., embedding-based (Bhatia et al., 2015; Yu et al., 2014; Mineiro and Karam-

patziakis, 2015; Tagami, 2017), tree-based (Prabhu and Varma, 2014; Jain

et al., 2016; Jasinska et al., 2016; Prabhu et al., 2018a), 1-vs-all (Prabhu et al.,

2018b; Babbar and Schölkopf, 2017; Yen et al., 2016, 2017; Niculescu-Mizil

and Abbasnejad, 2017; Hariharan et al., 2012), and deep learning (Jernite

et al., 2017; Liu et al., 2017). Here we focus on the embedding-based approach.

In Section 4.5 we show that the proposed autoencoder can be used to learn

label embeddings for multi-label datasets and the resulted method achieves

better or comparable precision scores as SLEEC (Bhatia et al., 2015) over two
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benchmark datasets.

4.3 Algorithm

Our goal is to learn a measurement matrix A from the given sparse

vectors. This is done via training a novel autoencoder, called `1-AE. In this

section, we will describe the key idea behind the design of `1-AE. Note that we

focus on the vectors that are sparse in the standard basis and also nonnegative2.

This is a natural setting for many real-world datasets, e.g., categorical data

and bag-of-words data.

4.3.1 Intuition

Our design is strongly motivated by the projected subgradient method

used to solve an `1-minimization problem. Consider the following `1-minimization

problem:

min
x′∈Rd
‖x′‖1 s.t. Ax′ = y, (4.5)

where A ∈ Rm×d and y ∈ Rm. We assume that m < d and that A has rank

m. One approach3 to solving (4.5) is the projected subgradient method. The

update is given by

x(t+1) = Π(x(t) − αtg(t)), where g(t) = sign(x(t)) (4.6)

2Extending our method to more general settings is left for future research.
3Another approach is via linear programming.
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where Π denotes the (Euclidean) projection onto the convex set {x′ : Ax′ = y},

g(t) is the sign function, i.e., the subgradient of the objective function ‖·‖1 at

x(t), and αt is the step size at the t-th iteration. Since A has full row rank, Π

has a closed-form solution given by

Π(z) = arg min
h
‖h− z‖2

2 s.t. Ah = y (4.7)

= z + arg min
h′
‖h′‖2

2 s.t. Ah′ = y − Az (4.8)

= z + A†(y − Az), (4.9)

where A† = AT (AAT )−1 is the Moore-Penrose inverse of matrix A. Substituting

(4.9) into (4.6), and using the fact that Ax(t) = y, we get the following update

equation

x(t+1) = x(t) − αt(I − A†A)sign(x(t)), (4.10)

where I is the identity matrix. We use x(1) = A†y (which satisfies the constraint

Ax′ = y) as the starting point.

As mentioned in the Introduction, our main idea is to replace the

solution of an `1 decoder given in (4.5) by a T -step projected subgradient

update given in (4.10). One technical difficulty4 in simulating (4.10) using

neural networks is backpropagating through the pesudoinverse A†. Fortunately,

Lemma 4.3.1 shows that it is possible to replace A† by AT .

Lemma 4.3.1. For any vector x ∈ Rd, and any matrix A ∈ Rm×d (m < d)

with rank m, there exists an Ã ∈ Rm×d with all singular values being ones, such

4One approach is to replace A† by a trainable matrix B ∈ Rd×m. This approach performs
worse than ours (see Figure 4.5).
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that the following two `1-minimization problems have the same solution:

P1 : min
x′∈Rd
‖x′‖1 s.t. Ax′ = Ax. (4.11)

P2 : min
x′∈Rd
‖x′‖1 s.t. Ãx′ = Ãx. (4.12)

Furthermore, the projected subgradient update of P2 is

x(t+1) = x(t) − αt(I − ÃT Ã)sign(x(t)), x(1) = ÃT Ãx. (4.13)

A natural choice for Ã is U(AAT )−1/2A, where U ∈ Rm×m can be any unitary

matrix.

Lemma 1 essentially says that: 1) Instead of searching over all matrices

(of size m-by-d with rank m), it is enough to search over a subset of matrices

Ã, whose singular values are all ones. This is because A and Ã has the same

recovery performance for `1-minimization (this is true as long as Ã and A

have the same null space). 2) The key benefit of searching over matrices with

singular values being all ones is that the corresponding projected subgradient

update has a simpler form: the annoying pesudoinverse term A† in (4.10) is

replaced by a simple matrix transpose AT in (4.13).

As we will show in the next section, our decoder is designed to simulate

(4.13) instead of (4.10): the only difference is that the pesudoinverse term

A† is replaced by matrix transpose AT . Ideally we should train our `1-AE by

enforcing the constraint that the matrices have singular values being ones. In

practice, we do not enforce that constraint during training. We empirically

observe that the learned measurement matrix A is not far from the constraint

set (see Appendix C.4.4).
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4.3.2 Network Structure of `1-AE
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Figure 4.1: Network structure of the proposed autoencoder `1-AE.

As shown in Figure 4.1, `1-AE has a simple linear encoder and a non-

linear decoder. When a data point x ∈ Rd comes, it is encoded as y = Ax,

where A ∈ Rm×d is the encoding matrix that will be learned from data. A

decoder is then used to recover the original vector x from its embedding y.

The decoder network of `1-AE consists of T blocks connected in a

feedforward manner: the output vector of the t-th block is the input vector

to the (t + 1)-th block. The network structure inside each block is identical.

Let x(1) = ATy. For t ∈ {1, 2, ..., T}, if x(t) ∈ Rd is the input to the t-th block,

then its output vector x(t+1) ∈ Rd is

x(t+1) = x(t) − αt(I − ATA)sign(x(t)), (4.14)

where α1, α2, · · · , αT ∈ R are scalar variables to be learned from data. We

empirically observe that regularizing αt to have the following form5 αt = β/t

5This form is sometimes called square summable but not summable (Boyd, 2014).
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for t ∈ {1, 2, ..., T} improves test accuracy. Here, β ∈ R is the only scalar

variable to be learned from data. We also add a standard batch normalization

(BN) layer (Ioffe and Szegedy, 2015) inside each block, because empirically it

improves the test accuracy (see Figure 4.5). After T blocks, we use rectified

linear units (ReLU) in the last layer6 to obtain the final output x̂ ∈ Rd:

x̂ = ReLU(x(T+1)).

It is worth noting that the low-rank structure of the weight matrix

I − ATA in (4.14) is essential for reducing the computational complexity. A

fully-connected layer requires a weight matrix of size d× d, which is intractable

for large d.

Given n unlabeled training examples {xi}ni=1, we will train an `1-AE to

minimize the average squared `2 distance between x ∈ Rd and x̂ ∈ Rd:

min
A∈Rm×d, β∈R

1

n

n∑
i=1

‖xi − x̂i‖2
2. (4.15)

4.4 Experiments

We implement `1-AE in Tensorflow 1.4. Our code can be found at https:

//github.com/wushanshan/L1AE. The goal of this section is to demonstrate

that `1-AE is able to learn a good measurement matrix A for the structured

sparse datasets, when we use `1-minimization for decoding7.

6This makes sense as we focus on nonnegative sparse vectors in this project. Nonnegativity
is a natural setting for many real-world sparse datasets, e.g., categorical data and text data.

7We use Gurobi (a commercial optimization solver) to solve it.
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4.4.1 Datasets and Training

Dataset d NNZ Train/Valid/Test Description

Synthetic1 1000 10 6000/2000/2000 1-block sparse with block size 10
Synthetic2 1000 10 6000/2000/2000 2-block sparse with block size 5
Synthetic3 1000 10 6000/2000/2000 Power-law structured sparsity
Amazon 15626 9 19661/6554/6554 1-hot encoded categorical data

Wiki10-31K 30398 19 14146/3308/3308 Extreme multi-label data
RCV1 47236 76 13889/4630/4630 Text data with TF-IDF features

Table 4.1: Summary of the datasets. Each data point has dimension d. The
third column “NNZ” is the average number of nonzeros in each data point.
The fourth column gives the sizes of the training/validation/test sets. The
validation set is used for parameter tuning and early stopping.

Synthetic datasets. As shown in Table 4.1, we generate three syn-

thetic datasets: two satisfy the block sparsity model8 (Baraniuk et al., 2010),

and one follows the power-law structured sparsity (The i-th coordinate is

nonzero with probability proportional to 1/i). Each sample is generated as

follows: 1) choose a random support set satisfying the sparsity model; 2) set

the nonzeros to be uniform in [0, 1].

Real datasets. Our first dataset is from Kaggle “Amazon Employee

Access Challenge”9. Each training example contains 9 categorical features.

We use one-hot encoding to transform each example. Our second dataset

Wiki10-31K is a multi-label dataset downloaded from this repository (Bhatia

8A signal x ∈ Rd is called K-block sparse with block size J if it satisfies: 1) x can be
reshaped into a matrix X of size J × N , where JN = d; 2) every column of X acts as a
group, i.e., the entire column is either zero or nonzero; 3) X has K nonzero columns, and
hence x has sparsity KJ .

9https://www.kaggle.com/c/amazon-employee-access-challenge
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et al., 2017). We only use the label vectors to train our autoencoder. Our third

dataset is RCV1 (Lewis et al., 2004), a popular text dataset. We use scikit-learn

to fetch the training set and randomly split it into train/validation/test sets.

Training. We use stochastic gradient descent to train the autoencoder.

Before training, every sample is normalized to have unit `2 norm. The param-

eters are initialized as follows: A ∈ Rm×d is a random Gaussian matrix with

standard deviation 1/
√
d; β is initialized as 1.0. Other hyper-parameters are

given in Appendix C.2. A single NVIDIA Quadro P5000 GPU is used in the

experiments. We set the decoder depth T = 10 for most datasets10. Training

an `1-AE can be done in several minutes for small-scale datasets and in around

an hour for large-scale datasets.

4.4.2 Baseline Algorithms

We compare 10 algorithms in terms of their recovery performance. The

results are shown in Figure 4.2 and Figure 4.3. All the algorithms follow a

two-step “encoding + decoding” process.

`1-AE + `1-min pos (our algorithm): After training an `1-AE ,

we use the encoder matrix A as the measurement matrix. To decode, we use

Gurobi (a commercial optimization solver) to solve the following `1-minimization

10Although the subgradient method (Boyd, 2014) has a O(1/ε2) convergence rate, in
practice, we found that a small value of T (e.g., T = 10) seemed to be good enough (see
Table 4.2).

81



problem with positivity constraint (denoted as “`1-min pos”):

min
x′∈Rd
‖x′‖1 s.t. Ax′ = y, x′ ≥ 0. (4.16)

Since we focus on nonnegative sparse vectors, adding a positivity constraint

improves the recovery performance11 (see Appendix C.4.3).

Gauss + `1-min pos / model-based CoSaMP pos: A random

Gaussian matrix G ∈ Rm×d with i.i.d. N(0, 1/m) entries is used as the mea-

surement matrix12. We experiment with two decoding methods: 1) Solve the

optimization problem given in (4.16); 2) Use the model-based CoSaMP algo-

rithm13 (Algorithm 1 in (Baraniuk et al., 2010)) with an additional positivity

constraint (see Appendix C.3).

PCA or PCA + `1-min pos: We perform truncated singular value

decomposition (SVD) on the training set. Let A ∈ Rm×d be the top-m singular

vectors. For PCA, every vector x ∈ Rd in the test set is estimated as ATAx.

We can also use “`1-min pos” (4.16) as the decoder.

Simple AE or Simple AE + `1-min pos: We train a simple autoen-

coder: for an input vector x ∈ Rd, the output is ReLU(BTAx) ∈ Rd, where

both B ∈ Rm×d and A ∈ Rm×d are learned from data. We use the same loss

11The sufficient and necessary condition (Theorem 3.1 of (Khajehnejad et al., 2011)) for
exact recovery using (4.16) is weaker than the the nullspace property (NSP) (Rauhut, 2010)
for (4.5).

12Additional experiments with random partial Fourier matrices (Haviv and Regev, 2017)
can be found in Appendix C.4.2.

13Model-based method needs the explicit sparsity model, and hence is not applicable for
RCV1, Wiki10-31K, and Synthetic3.
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function as our autoencoder. After training, we use the learned A matrix as

the measurement matrix. Decoding is performed either by the learned decoder

or solving “`1-min pos” (4.16).

LBCS + `1-min pos / model-based CoSaMP pos: We implement

the learning-based compressive subsampling (LBCS) method in (Baldassarre

et al., 2016). The idea is to select a subset (of size m) of coordinates (in

the transformed space) that preserves the most energy. We use Gaussian

matrix as the basis matrix and “`1-min pos” as the decoder14. Decoding with

“model-based CoSaMP pos” is in Figure 4.4.

4-layer AE: We train a standard 4-layer autoencoder (we do not count

the input layer), whose encoder network (and decoder network) consists of two

feedforward layers with ReLU activation. The dimension of the 1st (and 3rd)

layer is tuned based on the performance on the validation set.

4.4.3 Results and Analysis

The experimental results are shown in Figure 4.2 and Figure 4.3. Two

performance metrics are compared15. The first one is the fraction of exactly

recovered test samples. We say that a vector x is exactly recovered by an

14We tried four variations of LBCS: two different basis matrices (random Gaussian
matrix and DCT matrix), two different decoders (`1-minimization and linear decoder).
The combination of Gaussian and `1-minimization performs the best (see Appendix C.4.5).

15As an iterative algorithm, the CoSaMP algorithm’s performance may depend on the
halting criterion. In our experiments, we assume that it knows the original vector x (which is
not possible in reality), and monitor the error ‖x̂− x‖2 after each iteration. In other words,
the performance of the CoSaMP algorithm shown in Figure 4.2 and Figure 4.3 is its best
performance regardless of the halting criterion.
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Figure 4.2: Best viewed in color. Recovery performance over three synthetic
datasets: fraction of exactly recovered data points in the test set (1st row);
reconstruction error (2nd row). We only plot the test RMSE for the following
baselines: simple AE, 4-layer AE, `1-AE, and PCA. This is because they cannot
produce a perfect reconstruction x̂ that satisfies ‖x − x̂‖2 ≤ 10−10 (see also
Table 4.3). We plot the mean and standard deviation (indicated by the error
bars) across 10 randomly generated datasets. Note that model-based CoSaMP
decoder is not applicable for the Synthetic3 datasets. Our “`1-AE + `1-min pos”
gives the best recovery performance across all the three synthetic datasets.
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Figure 4.3: Best viewed in color. Recovery performance over three real datasets:
fraction of exactly recovered data points in the test set (1st row); reconstruction
error (2nd row). Similar to Figure 4.2, we only plot the test RMSE for the
following baselines: simple AE, 4-layer AE, `1-AE, and PCA. This is because
they cannot produce a perfect reconstruction x̂ that satisfies ‖x− x̂‖2 ≤ 10−10

(see also Table 4.3). Note that model-based CoSaMP decoder is not applicable
for Wiki10-31K and RCV1 datasets. Our “`1-AE + `1-min pos” gives the best
recovery performance across all the three real datasets.
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algorithm if it produces an x̂ that satisfies ‖x− x̂‖2 ≤ 10−10. The second metric

is the root mean-squared error (RMSE) over the test set16:
√∑n

i=1‖xi − x̂i‖2
2/n.

We only evaluate the second metric (i.e., test RMSE) for the following baselines:

simple AE, 4-layer AE, `1-AE, and PCA. This is because they cannot produce

a perfect reconstruction x̂ that satisfies ‖x− x̂‖2 ≤ 10−10 (see also Table 4.3).

As shown in Figure 4.2 and Figure 4.3, our algorithm “`1-AE + `1-min

pos” outperforms the other baselines over all datasets. By learning a data-

dependent linear encoding matrix, our method requires fewer measurements to

achieve perfect recovery.

Learned decoder versus `1-min decoder. We now compare two

methods: `1-AE and `1-AE + `1-min pos. They have a common encoder but

different decoders. As shown in Figure 4.2 and Figure 4.3, “`1-AE + `1-min

pos” almost always gives a smaller RMSE. In fact, as shown in Table 4.3,

“`1-min pos” is able to achieve reconstruction errors in the order of 1e-15, which

is impossible for a neural network. The strength of optimization-based decoder

over neural network-based decoder has been observed before, e.g., see Figure 1

in (Bora et al., 2017)17. Nevertheless, neural network-based decoder usually has

an advantage that it can handle nonlinear encoders, for which the corresponding

optimization problem may become non-convex and hard to solve exactly.

Model-based decoder versus learned encoder. It is interesting to

16Note that in Figure 4.2 and Figure 4.3, test RMSE has similar scale across all datasets,
because the vectors are normalized to have unit `2 norm.

17As indicated by Figure 1 in (Bora et al., 2017), LASSO gives better reconstruction than
GAN-based method when given enough Gaussian measurements.
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Dataset Synthetic1 Amazon

# measurements 10 30 50 40 80 120

`1-AE 0.465 0.129 0.118 0.638 0.599 0.565

`1-AE+`1-min pos (ours) 0.357 9.9e-3 1.4e-15 0.387 0.023 2.8e-15

Table 4.2: Comparison of test RMSE for `1-AE and `1-AE + `1-min pos.

# measurements 10 20 30 40
T = 10 0.357 0.097 9.9e-3 1.3e-15
T = 20 0.293 0.063 1.2e-15 1.3e-15
T = 30 0.259 9.6e-16 1.1e-15 1.3e-15

Table 4.3: Test RMSE of our method “`1-AE + `1-min pos” on the Synthetic1
dataset: the error decreases as the decoder depth T increases.

see that our algorithm even outperforms model-based method (Baraniuk et al.,

2010), even though the model-based decoder has more information about the

given data than `1-minimization decoder. For the Amazon dataset, compared

to “Gauss + model-based CoSaMP pos”, our method reduces the number of

measurements needed for exact recovery by about 2x. This is possible because

the model-based decoder only knows that the input vector comes from one-hot

encoding, which is a coarse model for the underlying sparsity model. By

contrast, `1-AE learns a measurement matrix directly from the given training

data.

A natural question to ask is whether the measurement matrix learned

by `1-AE can improve the recovery performance of the model-based decoding

algorithm. As shown in Figure 4.4, the recovery performance of “`1-AE +

model-based CoSaMP pos” is better than “Gauss + model-based CoSaMP pos”.

This further demonstrates the benefit of learning a data-adaptive measurement
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Figure 4.4: Best viewed in color. Although `1-AE is designed for the `1-min
decoder, the matrix learned from `1-AE also improves the recovery performance
when the decoder is model-based CoSaMP.

matrix. Note that “`1-AE + model-based CoSaMP pos” does not always

outperform “`1-AE + `1-min pos”, possibly because our autoencoder is designed

for the `1-min decoder rather than the CoSaMP decoder.

Variations of `1-AE. We now examine how slightly varying the decoder

structure would affect the performance. We make the following changes to the

decoder structure: 1) remove the Batch Normalization layer; 2) remove the

ReLU operation in the last layer; 3) change the nonlinearity from sign to tanh;

4) replace the AT term in the decoder network by a matrix B ∈ Rd×m that

is learned from data; 5) use one-layer neural network as the decoder, i.e., set

T = 0 in `1-AE . Each change is applied in isolation. As shown in Figure 4.5,

our design gives the best recovery performance among all the variations for the

Amazon dataset.

Decoder depth of `1-AE. The decoder depth T is a tuning parameter

88



20 40 60 80 100 120
# of measurements (m)

0

0.5

1

Fr
ac

tio
n 

of
 p

er
fe

ct
ly

re
co

ve
re

d 
te

st
 p

oi
nt

s Amazon

our design
no batch normalization
no ReLU in the last layer

20 40 60 80 100 120
0

0.5

1
Amazon

sign replaced by tanh
AT replaced by B
one-layer decoder

Figure 4.5: Recovery performance of “`1-AE + `1-min pos” on the Amazon
test set when we slightly change the decoder structure. Each change is applied
in isolation.

of `1-AE . Empirically, the performance of the learned matrix improves as T

increases (see Table 4.2). On the other hand, the training time increases as T

increases. The parameter T is tuned as follows: we start with T = 5, 10, ..., Tmax,

and stop if the validation performance improvement is smaller than a threshold

or if T equals Tmax. The hyper-parameters used for training `1-AE are given

in Appendix C.2. We set T = 5 for Synthetic2 and Synthetic3, T = 10 for

Synthetic1, RCV1, and Wiki10-31K, and T = 60 for Amazon dataset. The

autoencoder is trained on a single GPU. Training an `1-AE takes a few minutes

for small datasets and around an hour for large datasets.

4.5 Application in Extreme Multi-Label Learning

We have proposed a novel autoencoder `1-AE to learn a compressed

sensing measurement matrix for high-dimensional sparse data. Besides the

89



application of `1-AE in compressed sensing, one interesting direction for future

research is to use `1-AE in other machine learning tasks. Here we illustrate

a potential application of `1-AE in extreme multi-label learning (XML). For

each data point, the goal of XML is to predict a subset of relevant labels

from a extremely large label set. As a result, the output label vector is high-

dimensional, sparse, and nonnegative (with 1’s denoting the relevant labels

and 0’s otherwise).

Many approaches have been proposed for XML(see (Bhatia et al., 2017)

for the benchmark algorithms and datasets). Here we focus on the embedding-

based approach18, and one of the state-of-the-art embedding-based approaches19

is SLEEC (Bhatia et al., 2015). Given n training samples (xi, yi), i = 1, ..., n,

where xi ∈ Rp, yi ∈ Rd, we use X ∈ Rp×n and Y ∈ Rd×n to denote the stacked

feature matrix and label matrix. SLEEC works in two steps. In Step 1, SLEEC

reduces the dimension of the labels Y by learning an low-dimension embedding

for each training sample. Let Z ∈ Rm×n (where m < d) denote the learned

embedding matrix. Note that only the Y matrix is used for learning Z in this

step. In Step 2, SLEEC learns a linear mapping V ∈ Rm×p such that Z ≈ V X.

To predict the label vector for a new sample x ∈ Rp, SLEEC uses nearest

neighbors method: first computes the embedding V x, identifies a few nearest

neighbors (from the training set) in the embedding space, and uses the sum of

their label vectors as prediction.

18Other approaches include tree-based, 1-vs-all, etc.
19AnnexML (Tagami, 2017) is a graph-embedding approach for XML. Some of its techniques

(such as better partition of the input data points) can be potentially used with our method.
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The method that we propose follows SLEEC’s two-step procedure. The

main difference is that in Step 1, we train an autoencoder `1-AE to learn

embeddings for the labels Y . Note that in XML, the label vectors Y are

high-dimensional, sparse, and nonnegative. Let A ∈ Rm×d be the learned

measurement matrix for Y , then the embedding matrix is Z = AY . In Step 2,

we use the same subroutine as SLEEC to learn a linear mapping from X to Z.

To predict the label vector for a new sample, we compared three methods in

our experiments: 1) use the nearest neighbor method (same as SLEEC); 2) use

the decoder of the trained `1-AE (which maps from the embedding space to

label space); 3) use an average of the label vectors obtained from 1) and 2).

The three methods are denoted as “`1-AE 1/2/3” in Table 4.5.

In Table 4.5, we compare the precision score P@1 over two benchmark

datasets shown in Table 4.4. The second row is the number of models combined

in the ensemble. According to the XML benchmark website (Bhatia et al.,

2017), SLEEC achieves a precision score 0.7926 for EURLex-4K and 0.8588

for Wiki10-31K, which are consistent with what we obtained by running their

code (after combining 5 models in the ensemble). The embedding dimensions

are m = 100 for EURLex-4K and m = 75 for Wiki10-31K. We set T = 10 for

`1-AE. As shown in Table 4.5, our method has higher score than SLEEC for

EURLex-4K. For Wiki10-31K, a single model of our method has higher score

than SLEEC. When 3 or 5 models are ensembled, our method has comparable

precision score to SLEEC. More results can be found in Appendix C.4.6.
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Dataset
Feature Label Train/Test # labels

dimension dimension size per point
EURLex-4K 5000 3993 15539/3809 5.31
Wiki10-31K 101938 30938 14146/6616 18.64

Table 4.4: Summary of two XML benchmark datasets.

Dataset EURLex-4K Wiki10-31K
# models in the

1 3 5 1 3 5
ensemble
SLEEC 0.7600 0.7900 0.7944 0.8356 0.8603 0.8600
`1-AE 1 0.7655 0.7928 0.7931 0.8529 0.8564 0.8597
`1-AE 2 0.7949 0.8033 0.8070 0.8560 0.8579 0.8581
`1-AE 3 0.8062 0.8151 0.8136 0.8617 0.8640 0.8630

Table 4.5: Comparison of the P@1 scores.

4.6 Conclusion

Combining ideas from compressed sensing, convex optimization and

deep learning, we proposed a novel unsupervised learning framework for high-

dimensional sparse data. The proposed autoencoder `1-AE is able to learn

an efficient measurement matrix by adapting to the sparsity structure of the

given data. The learned measurement matrices can be subsequently used in

other machine learning tasks such as extreme multi-label learning. We expect

that the learned `1-AE can lead to useful representations in various supervised

learning pipelines, for datasets that are well represented by large sparse vectors.

Investigating the relation between the training data and the learned matrix

(see Appendix C.4.1 for a toy example) is an interesting direction for future

research.
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Chapter 5

Single Pass PCA of Matrix Products

5.1 Introduction

Given two large matrices A and B we study the problem of finding a

low rank approximation of their product ATB, using only one pass over the

matrix elements. This problem has many applications in machine learning and

statistics. For example, if A = B, then this general problem reduces to Principal

Component Analysis (PCA). Another example is a low rank approximation of a

co-occurrence matrix from large logs, e.g., A may be a user-by-query matrix and

B may be a user-by-ad matrix, so ATB computes the joint counts for each query-

ad pair. The matrices A and B can also be two large bag-of-word matrices. For

this case, each entry of ATB is the number of times a pair of words co-occurred

together. As a fourth example, ATB can be a cross-covariance matrix between

two sets of variables, e.g., A and B may be genotype and phenotype data

collected on the same set of observations. A low rank approximation of the

product matrix is useful for Canonical Correlation Analysis (CCA) (Chen et al.,

Chapter 5 is based on material from (Wu et al., 2016; Wu and Lindgren, 2016). The
author of this dissertation is the leading author of (Wu et al., 2016; Wu and Lindgren,
2016), and contributed to the idea, the analysis, the implementation and experiments, and
the writing of the paper. Source code can be found at https://github.com/wushanshan/
MatrixProductPCA.
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2012). For all these examples, ATB captures pairwise variable interactions

and a low rank approximation is a way to efficiently represent the significant

pairwise interactions in sub-quadratic space.

Let A and B be matrices of size d× n (d� n) assumed too large to fit

in main memory. To obtain a rank-r approximation of ATB, a naive way is to

compute ATB first, and then perform truncated singular value decomposition

(SVD) of ATB. This algorithm needs O(n2d) time and O(n2) memory to

compute the product, followed by an SVD of the n× n matrix. An alternative

option is to directly run power method on ATB without explicitly computing

the product. Such an algorithm will need to access the data matrices A and B

multiple times and the disk IO overhead for loading the matrices to memory

multiple times will be the major performance bottleneck.

For this reason, a number of recent papers introduce randomized al-

gorithms that require only a few passes over the data, approximately linear

memory, and also provide spectral norm guarantees. The key step in these

algorithms is to compute a smaller representation of data. This can be achieved

by two different methods: (1) dimensionality reduction, i.e., matrix sketch-

ing (Sarlos, 2006; Clarkson and Woodruff, 2013; Magen and Zouzias, 2011;

Cohen et al., 2016); (2) random sampling (Drineas et al., 2006a; Bhojanapalli

et al., 2015). The recent result of Cohen et al. (2016) provides the strongest

spectral norm guarantee of the former. They show that a sketch size of O(r̃/ε2)

suffices for the sketched matrices ÃT B̃ to achieve a spectral error of ε, where r̃

is the maximum stable rank of A and B. Note that ÃT B̃ is not the desired
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rank-r approximation of ATB. On the other hand, the recent sampling method

proposed by Bhojanapalli et al. (2015) gives very good performance guarantees.

Bhojanapalli et al. (2015) consider entrywise sampling based on column norms,

followed by a matrix completion step to compute low rank approximations.

There is also a lot of interesting work on streaming PCA (Balsubramani et al.,

2013; Mitliagkas et al., 2013; Boutsidis et al., 2015; Shamir, 2015), but none

can be directly applied to the general case when A is different from B (see an

example in Figure 5.5(c) which shows that PCA on the individual matrices

may not give information about their product).

Despite the significant volume of the prior work (see Section 5.1.2 for

more related work), there is no method that computes a rank-r approximation of

ATB when the entries of A and B are streaming in a single pass1. Bhojanapalli

et al. (2015) consider a two-pass algorithm which computes column norms

in the first pass and uses them to sample in a second pass over the matrix

elements. In this project, we combine ideas from the sketching and sampling

literature to obtain the first algorithm that requires only a single pass over the

data.

5.1.1 Our Contributions

• We propose a new algorithm SMP-PCA (which stands for Streaming

Matrix Product PCA) that computes a rank-r approximation of ATB

1One straightforward idea is to sketch each matrix individually and perform SVD on the
product of the sketches. We compare against that scheme and show that we can perform
arbitrarily better using our rescaled JL embedding.
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using one pass over the data. Existing two-pass algorithms such as (Bho-

janapalli et al., 2015) typically have longer runtime than our algorithm

(see Figure 5.4(a)). We also compare our algorithm with the simple

idea that first sketches A and B separately and then performs SVD on

the product of their sketches. We show that our algorithm achieves

better accuracy if the column vectors of A and B come from a cone (see

Figures 5.3, 5.5(b), 5.4(b)).

• The central idea of our algorithm is a novel rescaled JL embedding that

preserves the norm information during dimensionality reduction. This

allows us to get a better estimator of the dot products between high

dimensional vectors compared to previous sketching approaches. We

explain the benefit compared to a naive JL embedding in Section 5.3.

We believe it may be of more general interest beyond low rank matrix

approximations.

• We implement SMP-PCA in Apache Spark and perform several dis-

tributed experiments on synthetic and real datasets. Our distributed

implementation uses several design innovations described in Section 5.4.

Our experiments show that we improve by approximately a factor of

2× in running time compared to the previous state of the art and scale

gracefully as the cluster size increases. Our source code can be found at

https://github.com/wushanshan/MatrixProductPCA.

• In addition to better performance, our algorithm offers another advantage:
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It is possible to compute low-rank approximations to ATB even when the

entries of the two matrices arrive in some arbitrary order (as would be the

case in streaming logs). We can therefore discover significant correlations

even when the original datasets cannot be stored, for example due to

storage or privacy limitations.

5.1.2 Related Work

Approximate matrix multiplication: In the seminal work, Drineas

et al. (2006a) give a randomized algorithm which samples a few rows of A

and B and computes the approximate product. The distribution depends

on the row norms of the matrices and the algorithm achieves an additive

error proportional to ||A||F ||B||F . Later, Sarlos (2006) proposes a sketching

based algorithm, which computes sketched matrices and then outputs their

product. The analysis for this algorithm is then improved by Clarkson and

Woodruff (2009). All of these results compare the error in the Frobenius norm

||ATB − ÃT B̃||F .

For spectral norm bound of the form ||ATB − C||2 ≤ ε||A||2||B||2, the

authors in (Sarlos, 2006; Clarkson and Woodruff, 2013) show that the sketch

size needs to satisfy O(r/ε2), where r = rank(A)+rank(B). This dependence on

rank is later improved to stable rank in (Magen and Zouzias, 2011), but at the

cost of a weaker dependence on ε. Recently, Cohen et al. (2016) further improve

the dependence on ε and give a bound of O(r̃/ε2), where r̃ is the maximum

stable rank. Our algorithm SMP-PCA also uses sketching for dimensionality
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reduction, but in addition to sketching, we also have a novel rescaling procedure,

which provide a better estimator than just using the sketched matrices, as

illustrated in Figure 5.3. Furthermore, the previous sketching-based algorithms

do not directly give a matrix with the desired rank. Directly taking SVD on

the sketched matrices may give higher error rate than our algorithm, as shown

in Figure 5.4(b).

Low rank approximation: Frieze et al. (2004) introduce the problem

of computing low rank approximation of a given matrix using only a few passes

over the data. They give an algorithm that samples a few rows and columns of

the matrix and computes its SVD for low rank approximation. They show that

this algorithm achieves an additive error in the Frobenius norm. Later, the

authors in (Drineas et al., 2006b; Sarlos, 2006; Har-Peled, 2014; Deshpande

and Vempala, 2006) develop algorithms using various sketching techniques such

as Gaussian projection, random Hadamard transform, and volume sampling,

which achieve a relative error in the Frobenius norm. Improved analysis of

these algorithms can be found in (Woolfe et al., 2008; Nguyen et al., 2009;

Halko et al., 2011; Boutsidis and Gittens, 2013), where they also provide error

guarantees in the spectral norm. More recently, Clarkson and Woodruff (2013)

present an algorithm based on subspace embedding which can compute the

sketches in the input sparsity time.

Another class of methods uses entrywise sampling instead of sketching

to compute low rank approximation. Achlioptas and McSherry (2001) consider

an uniform entrywise sampling algorithm followed by SVD to compute low rank
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approximation. This gives an additive approximation error. More recently,

Bhojanapalli et al. (2015) consider biased entrywise sampling using leverage

scores, followed by matrix completion to compute low rank approximation.

While this algorithm achieves relative error approximation, it takes two passes

over the data.

5.1.3 Notation

Throughout Chapter 5, we use A(i, j) or Aij to denote (i, j) entry for

any matrix A. Let Ai and Aj be the i-th column vector and j-th row vector. We

use ‖A‖F for Frobenius norm, and ‖A‖2 for spectral (or `2) norm. The optimal

rank-r approximation of matrix A is Ar, which can be found by SVD. Given a

set Ω ⊂ [n1]× [n2] and a matrix A ∈ Rn1×n2 , we define PΩ(A) ∈ Rn1×n2 as the

projection of A on Ω, i.e., PΩ(A)(i, j) = A(i, j) if (i, j) ∈ Ω and 0 otherwise.

5.2 Algorithm

Consider the following problem: given two matrices A ∈ Rd×n1 and

B ∈ Rd×n2 that are stored in disk, find a rank-r approximation of their product

ATB. In particular, we are interested in the setting where both A, B and ATB

are too large to fit into memory. This is common for modern large scale machine

learning applications. For this setting, we develop a single-pass algorithm SMP-

PCA that computes the rank-r approximation without explicitly forming the

entire matrix ATB. Our algorithm SMC-PCA (Streaming Matrix Product

PCA) is described in Section 5.2.1. SMC-PCA is based on a key idea called
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Rescaled JL Embedding, which is analyzed in Section 5.3. The time complexity

of SMC-PCA is given in Section 5.2.2.

5.2.1 SMC-PCA

Our algorithm SMP-PCA (Streaming Matrix Product PCA) takes four

parameters as input: the desired rank r, number of samples m, sketch size k,

and the number of iterations T . As illustrated in Figure 5.1, our algorithm has

three main steps: 1) compute sketches and side information in one pass over A

and B; 2) given partial information of A and B, estimate important entries of

ATB; 3) compute low rank approximation given estimates of a few entries of

ATB. Now we explain each step in detail.
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Figure 5.1: An overview of our algorithm. A single pass is performed over
the data to produce the sketched matrices Ã, B̃ and the column norms ‖A‖2,

‖Bj‖2, for all (i, j) ∈ [n1]× [n2]. We then compute the sampled matrix PΩ(M̃)

through a biased sampling process, where PΩ(M̃) = M̃(i, j) if (i, j) ∈ Ω and

zero otherwise. Here Ω represents the set of sampled entries. We define M̃
as an estimator for ATB, and compute its entry as M̃(i, j) = ‖Ai‖2‖Bj‖2 ·

ÃT
i B̃j

‖Ãi‖2‖B̃j‖2
. Performing matrix completion on PΩ(M̃) gives the desired rank-r

approximation.
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Algorithm 7: SMP-PCA: Streaming Matrix Product PCA

Input: A ∈ Rd×n1 , B ∈ Rd×n2 , desired rank: r, sketch size: k,
number of samples: m, number of iterations: T

Output: Û ∈ Rn1×r and V̂ ∈ Rn2×r

1 Construct Π ∈ Rk×d, where Π(i, j) ∼ N(0, 1/k).

2 Perform a single pass over A and B to obtain: Ã = ΠA, B̃ = ΠB,
and column norms ‖Ai‖2, ‖Bj‖2, ∀(i, j) ∈ [n1]× [n2].

3 Sample entry (i, j) ∈ [n1]× [n2] independently with probability
q̂ij = min{1, qij}, where qij is defined in (5.1); maintain a set
Ω ⊂ [n1]× [n2] which stores all the sampled pairs (i, j).

4 Compute PΩ(M̃) ∈ Rn1×n2 , where M̃(i, j) is given in (5.2).

5 Û , V̂ ← WAltMin(PΩ(M̃), Ω, r, q̂, T ) (see Appendix D.1).

Step 1: Compute sketches and side information in one pass

over A and B. In this step we compute sketches Ã := ΠA and B̃ := ΠB,

where Π ∈ Rk×d is a random matrix with entries being i.i.d. N(0, 1/k) random

variables. It is known that Π satisfies an “oblivious Johnson-Lindenstrauss

(JL) guarantee” (Johnson and Lindenstrauss, 1984; Sarlos, 2006; Woodruff

et al., 2014), which helps preserving the top row spaces of A and B (Clarkson

and Woodruff, 2013). Note that any sketching matrix Π that is an oblivious

subspace embedding can be considered here, e.g., sparse JL transform and

randomized Hadamard transform (see (Cohen et al., 2016) for more discussions).

Besides Ã and B̃, we also compute the `2 norms for all column vectors,

i.e., ‖Ai‖2 and ‖Bj‖2, for all (i, j) ∈ [n1] × [n2]. We use this additional

information to design better estimates of ATB in the next step, and also to

determine important entries of ÃT B̃ to sample. Note that this is the only step

that needs one pass over data.
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Step 2: Estimate important entries of ATB by rescaled JL

embedding. In this step we use the partial information obtained from the

previous step to compute a few important entries of ÃT B̃.

We sample the (i, j)-th entry of ATB independently with probability

q̂ij = min{1, qij}, where

qij = m · ( ‖Ai‖
2
2

2n2‖A‖2
F

+
‖Bj‖2

2

2n1‖B‖2
F

). (5.1)

Let Ω ⊂ [n1]× [n2] be the set of sampled entries (i, j). Since E(
∑

i,j qij) = m,

the expected number of sampled entries is roughly m. The special form of qij

ensures that we can draw m samples in O(n1 +m log(n2)) time; we show how

to do this in Appendix D.2.

The sampling probability qij given in (5.1) captures important entries

of ATB by giving higher weight to heavy rows and columns. This biased

sampling distribution is first proposed by Bhojanapalli et al. (2015). However,

their algorithm needs a second pass to compute the sampled entries, while we

propose a novel way of estimating the dot products, using information obtained

in the first step. Specifically, let M̃ ∈ Rn1×n2 be a matrix with its (i, j)-th

entry being defined as

M̃(i, j) = ‖Ai‖2‖Bj‖2 ·
ÃTi B̃j

‖Ãi‖2‖B̃j‖2

. (5.2)

We now explain the intuition behind (5.2). To estimate the (i, j)-th entry of

ATB, the standard approach (Johnson and Lindenstrauss, 1984) is to compute

the dot product between their low-dimensional embeddings: ÃTi B̃j. We can
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express ÃTi B̃j as ‖Ãi‖2‖B̃j‖2 cos θ̃ij, where θ̃ij is the angle between vectors Ãi

and B̃j. Since we already know the actual column norms, a better estimator

would be ‖Ai‖2‖Bj‖2 cos θ̃ij, because it removes the uncertainty that comes

from the distorted column norms2. Eq. (5.2) is equivalent to computing the

dot product between two low-dimensional vectors:〈
‖Ai‖2

‖Ãi‖2

Ãi,
‖Bj‖2

‖B̃j‖2

B̃j

〉
. (5.3)

The low-dimensional embedding ‖Ai‖2
‖Ãi‖2

Ãi is a rescaled version of the original

linear embedding Ãi. We call it the Rescaled JL Embedding, and formally

define it and analyze it in Section 5.3.

Note that the whole matrix M̃ does not need to be computed and stored.

All we need is a subset of its entries: M̃(i, j) for (i, j) ∈ Ω. This matrix is

denoted as PΩ(M̃), where PΩ(M̃)(i, j) = M̃(i, j) if (i, j) ∈ Ω and 0 otherwise.

Step 3: Compute low rank approximation given estimates of

few entries of ATB. Finally we compute the low rank approximation of ATB

from the samples using alternating least squares:

min
U,V ∈Rn×r

∑
(i,j)∈Ω

wij(e
T
i UV

T ej − M̃(i, j))2, (5.4)

where wij = 1/q̂ij denotes the weights, and ei, ej are standard base vectors.

This is a popular technique for low rank recovery and matrix completion

2We also tried using the cosine rule for computing the dot product, and another sketching
method specifically designed for preserving angles (Boufounos, 2013), but empirically those
methods perform worse than our current estimator.
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(see (Bhojanapalli et al., 2015) and the references therein). After T iterations,

we will get a rank-r approximation of M̃ presented in the convenient factored

form. This subroutine is quite standard, so we defer the details to Appendix D.1.

5.2.2 Time Complexity

We now analyze the computation complexity of SMP-PCA. In Step 1,

we compute the sketched matrices of A and B, which requires O(nnz(A)k +

nnz(B)k) flops. Here nnz(·) denotes the number of non-zero entries. The

main job of Step 2 is to sample a set Ω and calculate the corresponding

inner products, which takes O(m log(n) + mk) flops. Here we define n as

max{n1, n2} for simplicity. In Step 3, we run alternating least squares on the

sampled matrix, which can be completed in O((mr2 + nr3)T ) flops. Since

m ≥ nr (Bhojanapalli et al., 2015), the computation complexity of Step

3 is O(mr2T ). Therefore, SMP-PCA has a total computation complexity

O(nnz(A)k + nnz(B)k +m log(n) +mk +mr2T ).

5.3 Analysis of Rescaled JL Embedding

In Section 5.2.1, we present Rescaled JL Embedding, a new dimensionality

reduction map that can potentially better preserve the pairwise geometry. In

this section, we compare (both theoretically and empirically) the performance

between the rescaled JL embedding and the standard JL embedding. We start
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with a formal definition of the two embedding schemes3.

Definition 5.3.1. Let G ∈ Rm×d be a random matrix with every entry being

drawn independently from a Gaussian distribution N(0, 1/m). For any x ∈ Rd,

we define the standard JL embedding g : Rd → Rm and the rescaled JL

embedding f : Rd → Rm as

g(x) := Gx; f(x) :=
Gx

‖Gx‖2

‖x‖2. (5.5)

It is easy to check that ‖f(x)‖2 = ‖x‖2, i.e., the length of the vector is

preserved, which is done by a simple rescaling operation.

5.3.1 Theoretical Guarantees

We now compare the theoretical guarantees of the two embedding

schemes defined in Definition 5.5.

Theorem 5.3.1 (see, e.g., Theorem 2.1 in Woodruff et al. (2014)). Let g :

Rd → Rm be the standard JL map defined in Definition 5.5. Given two arbitrary

vectors x, y ∈ Rd, for any ε, δ ∈ (0, 1/2), if m = O( 1
ε2

), then with probability at

least 3/44,

| 〈g(x), g(y)〉 − 〈x, y〉 | ≤ ε‖x‖2‖y‖2. (5.6)

3We focus on random Gaussian matrices here, but the same idea works for other random
matrices.

4We focus on constant success probability here as standard techniques can be used to
boost the success probability to 1 − δ with an extra multiplicative factor ln(1/δ) in the
embedding dimension m.
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Theorem 5.3.2. Let f : Rd → Rm be the rescaled JL map defined in Defi-

nition 5.5. Given two arbitrary vectors x, y ∈ Rd, for any ε, δ ∈ (0, 1/2), if

m = O( 1
ε2

), then with probability at least 3/4,

| 〈f(x), f(y)〉 − 〈x, y〉 | ≤ p(θx,y,m)‖x‖2‖y‖2, (5.7)

where θx,y is the angle between x and y, and p(·, ·) is defined in Definition 5.3.2.

Definition 5.3.2. Define p(θ,m) as a function of an angle θ ∈ [0, π] and a

positive integer m:

p(θ,m) = 2
√

E
g,u

[γ2 − 2 cos(θ)γ] + cos2(θ), (5.8)

where u+1
2
∼ Beta(m−1

2
, m−1

2
) follows Beta-distribution, g ∼ F(m,m) is a

random variable with F-distribution, and

γ =
u sin(θ) +

√
g cos(θ)√

g cos2(θ) + sin2(θ) + 2u sin(θ) cos(θ)
√
g
. (5.9)

Comparing Theorem 5.3.1 and Theorem 5.3.2, we see that both embed-

ding schemes preserve the dot product information up to an additive error that

depends on ‖x‖2‖y‖2. The only difference is that for standard JL embedding,

the error term (shown in Theorem 5.3.1) only depends on the embedding

dimension, while for rescaled JL embedding, the error term p(θ,m) (shown in

Theorem 5.3.2) is a function of the angle and the embedding dimension.
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We are now interested in how p(θ,m) changes with θ for a fixed m. If

m = d4/ε2e, then it is easy to check that

p(0,m) = p(π,m) = 2
√

E
g,u

[cos2(0)− 2 cos2(0)] + cos2(0) = 0;

p(π/2,m) = 2
√
E
u
u2 = 2

√
1/m ≤ ε.

We plot p(θ, 400) as a function of θ in Figure 5.2. This function has a bell-

shaped curve: it reaches maximum at θ = π/2 and minimum at θ = 0 and π.

Note that p(0,m) = p(π,m) = 0 is consistent with our intuition: when θ = 0

(or π), the two vectors x, y (and also f(x), f(y)) have the same direction, so

their dot product only depends on the norms. More formally,

〈f(x), f(y)〉 = ‖f(x)‖2‖f(y)‖2 = ‖x‖2‖y‖2 = 〈x, y〉 .

0 1 2 3
0

0.05

0.1

p
(

)

Figure 5.2: We plot p(θ, 400) as a function of θ. This function has a bell-shaped
curve: it reaches maximum at θ = π/2 and minimum at θ = 0 and π.
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5.3.2 Empirical Comparisons

In Figure 5.3(a), we compare the performance of standard JL embedding

and rescaled JL embedding in estimating the dot products. Rescaled JL em-

bedding is formally defined in Definition 5.5. Every data point in Figure 5.3(a)

is generated as follows: 1) randomly pick a θ ∈ [0, π]; 2) generate two unit-

norm vectors x, y ∈ R1000 with angle θ; 3) generate a random Gaussian matrix

G ∈ R10×1000 with every entry being N(0, 0.1); 4) compute 〈x, y〉, 〈Gx,Gy〉,

and 〈Gx/‖Gx‖2, Gy/‖Gy‖2〉.

As shown in Figure 5.3(a), rescaled JL embedding reduces the estimation

uncertainty compared to the standard JL embedding. This phenomenon is

more prominent when the true dot products are close to ±1. In the extreme

case when cos(θ) = ±1, rescaled JL embedding can perfectly recover the

true dot product. This is consistent with our theoretical guarantee given in

Theorem 5.3.2.

In Figure 5.3(b), we compare the performance between standard JL and

rescaled JL embedding when estimating the product of two matrices. Given a

θ ∈ [0, π], we generate two matrices A ∈ R1000×1000 and B ∈ R1000×1000 such that

their columns are unit-norm vectors randomly drawn from a cone with angle θ.

We illustrate how to do this in the lower part of Figure 5.3(b) (more details can

be found in the caption of Figure 5.3(b)). We then generate a random Gaussian

matrix Π ∈ R10×1000 with each entry sampled from N(0, 0.1). We now compute

Ã = ΠA, B̃ = ΠB, and M̃ in (5.2). In the upper part of Figure 5.3(b), we plot

the ratio of spectral norm errors ‖ATB− ÃT B̃‖2/‖ATB− M̃‖2 as a function of
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θ. As shown in the figure, M̃ always outperforms ÃT B̃ and can be much better

when θ approaches zero, which agrees with the trend shown in Figure 5.3(a).
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Figure 5.3: (a) Rescaled JL embedding (red dots, mean squared error 0.053)
has smaller estimation error than standard JL embedding (blue triangles, mean
squared error 0.129). (b) In the lower plot, we illustrate how to construct
unit-norm vectors from a cone with angle θ. Let x be a fixed unit-norm vector,
and let t be a random Gaussian vector with expected norm tan(θ/2), we set y as
either x+t or −(x+t) with probability half, and then normalize it. In the upper

figure, we plot the ratio of spectral norm errors ‖ATB − ÃT B̃‖2/‖ATB − M̃‖2,
when the column vectors of A and B are unit vectors drawn from a cone with
angle θ. Clearly, M̃ has better accuracy than ÃT B̃ for all possible values of θ,
especially when θ is small.

5.4 Experiments

5.4.1 Spark Implementation

We implement our SMP-PCA in Apache Spark 1.6.2 (Zaharia et al.,

2012). For the purpose of comparison, we also implement a two-pass algorithm
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LELA (Bhojanapalli et al., 2015) in Spark5. The matrices A and B are stored

as a resilient distributed dataset (RDD) in disk (by setting its StorageLevel as

DISK_ONLY). We implement the two passes of LELA using the treeAggregate

method. For SMP-PCA, we choose the subsampled randomized Hadamard

transform (SRHT) (Tropp, 2011) as the sketching matrix 6. The biased sampling

procedure is performed using binary search (see Appendix D.2 for how to sample

m elements in O(m log n) time). After obtaining the sampled matrix, we run

ALS (alternating least squares) to get the desired low-rank matrices. Our code

can be found at https://github.com/wushanshan/MatrixProductPCA.
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Figure 5.4: (a) Spark-1.6.2 running time on a 150GB dataset. All nodes are
m.2xlarge EC2 instances. (b) Spectral norm error achieved by three algorithms
over two datasets: SIFT10K (left) and NIPS-BW (right). We observe that

SMP-PCA outperforms SVD(ÃT B̃) by a factor of 1.8 for SIFT10K and 1.1
for NIPS-BW. Besides, the error of SMP-PCA keeps decreasing as the sketch
size k grows.

5To our best knowledge, this the first distributed implementation of LELA.
6Compared to Gaussian sketch, SRHT reduces the runtime from O(ndk) to O(nd log d)

and space cost from O(dk) to O(d), while maintains the same quality of the output.
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5.4.2 Description of the Datasets

We test our algorithm on synthetic datasets and three real datasets:

SIFT10K (Jegou et al., 2011), NIPS-BW (Lichman, 2013), and URL-reputation

(Ma et al., 2009). For synthetic data, we generate matrices A and B as GD,

where G has entries independently drawn from standard Gaussian distribution,

and D is a diagonal matrix with Dii = 1/i. SIFT10K is a dataset of 10,000

images. Each image is represented by 128 features. We set A as the image-by-

feature matrix. The task here is to compute a low rank approximation of ATA,

which is a standard PCA task. The NIPS-BW dataset contains bag-of-words

features extracted from 1,500 NIPS papers. We divide the papers into two

subsets, and let A and B be the corresponding word-by-paper matrices, so

ATB computes the counts of co-occurred words between two sets of papers.

The original URL-reputation dataset has 2.4 million URLs. Each URL is

represented by 3.2 million features, and is indicated as malicious or benign.

This dataset has been used previously for CCA (Ma et al., 2015). Here we

extract two subsets of features, and let A and B be the corresponding URL-

by-feature matrices. The goal is to compute a low rank approximation of ATB,

the cross-covariance matrix between two subsets of features.

5.4.3 Empirical Evaluations

Sample complexity. In Figure 5.5(a) we present simulation results on

a small synthetic data with n = d = 5, 000 and r = 5. We observe that a phase

transition occurs when the sample complexity m = Θ(nr log n). This agrees
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with the experimental results shown in the previous papers (Chen et al., 2015;

Bhojanapalli et al., 2015). For the rest experiments presented in this section,

unless otherwise specified, we set r = 5, T = 10, and sampling complexity m

as 4nr log n.

Dataset d n Algorithm Sketch size k Error

Synthetic 100,000 100,000
Optimal - 0.0271
LELA - 0.0274

SMP-PCA 2,000 0.0280

URL-
malicious

792,145 10,000
Optimal - 0.0163
LELA - 0.0182

SMP-PCA 2,000 0.0188

URL-
benign

1,603,985 10,000
Optimal - 0.0103
LELA - 0.0105

SMP-PCA 2,000 0.0117

Table 5.1: Comparison of spectral norm error over three datasets.

Comparison of SMP-PCA and LELA. We now compare the sta-

tistical performance of SMP-PCA and LELA (Bhojanapalli et al., 2015)

on three real datasets and one synthetic dataset. As shown in Figure 5.4(b)

and Table 5.1, LELA always achieves a smaller spectral norm error than

SMP-PCA, which makes sense because LELA takes two passes and hence

has more chances exploring the data. Besides, we observe that as the sketch

size increases, the error of SMP-PCA keeps decreasing and gets closer to that

of LELA.

In Figure 5.4(a) we compare the runtime of SMP-PCA and LELA
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using a 150GB synthetic dataset on m3.2xlarge Amazon EC2 instances7. The

matrices A and B have dimension n = d = 100, 000. The sketch dimension

is set as k = 2, 000. We observe that the speedup achieved by SMP-PCA is

more prominent for small clusters (e.g., 56 mins versus 34 mins on a cluster

of size two). This is possibly due to the increasing spark overheads at larger

clusters, see (Gittens et al., 2016) for more related discussions.

Comparison of SMP-PCA and SVD(ÃT B̃). In Figure 5.5(b) we

repeat the experiment in Section 5.2 by generating column vectors of A and B

from a cone with angle θ. Here SVD(ÃT B̃) refers to computing SVD on the

sketched matrices8. We plot the ratio of the spectral norm error of SVD(ÃT B̃)

over that of SMP-PCA, as a function of θ. Note that this is different from

Figure 5.3(b), as now we take the effect of random sampling and SVD into

account. However, the trend in both figures are the same: SMP-PCA always

outperforms SVD(ÃT B̃) and can be arbitrarily better as θ goes to zero.

In Figure 5.4(b) we compare SMP-PCA and SVD(ÃT B̃) on two real

datasets SIFK10K and NIPS-BW. The y-axis represents spectral norm error,

defined as ‖ATB− ÂTBr‖2/‖ATB‖2, where ÂTBr is the rank-r approximation

found by a specific algorithm. We observe that SMP-PCA outperforms

SVD(ÃT B̃) by a factor of 1.8 for SIFT10K and 1.1 for NIPS-BW.

Now we explain why SMP-PCA produces a more accurate result than

7Each machine has 8 cores, 30GB memory, and 2×80GB SSD.
8This can be done by standard power iteration based method, without explicitly forming

the product matrix ÃT B̃, whose size is too big to fit into memory according to our assumption.
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Figure 5.5: (a) A phase transition occurs when the sample complexity m =

Θ(nr log n). (b) This figure plots the ratio of spectral norm error of SVD(ÃT B̃)
over that of SMP-PCA. The columns of A and B are unit vectors drawn from
a cone with angle θ. We see that the ratio of errors scales to infinity as the
cone angle shrinks. (c) If the top r left singular vectors of A are orthogonal to
those of B, the product ATr Br is a very poor low rank approximation of ATB.

SVD(ÃT B̃). The reasons are twofold. First, our rescaled JL embedding M̃ is

a better estimator for ATB than ÃT B̃ (Figure 5.3). Second, the noise due to

sampling is relatively small compared to the benefit obtained from M̃ , and

hence the final result computed using PΩ(M̃) still outperforms SVD(ÃT B̃).

Comparison of SMP-PCA and ATr Br. LetAr andBr be the optimal

rank-r approximation of A and B, we show that even if one could use existing

methods (e.g., algorithms for streaming PCA) to estimate Ar and Br, their

product ATr Br can be a very poor low rank approximation of ATB. This is

demonstrated in Figure 5.5(c), where we intentionally make the top r left

singular vectors of A orthogonal to those of B.
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5.5 Conclusion

We developed a novel one-pass algorithm SMP-PCA that directly

computes a low rank approximation of a matrix product, using ideas of matrix

sketching and entrywise sampling. As a subroutine of our algorithm, we

proposed rescaled JL embedding for estimating entries of ATB, which has

smaller error compared to that of standard JL embedding. This we believe can

be extended to other applications. We provided a distributed implementation

for SMP-PCA in Apache Spark. Compared to algorithms that require two or

more passes over the data, our experimental results showed that SMP-PCA

gives comparable error at a faster runtime.
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Appendix A

Appendix for Chapter 2

A.1 Proof of Lemma 2.4.1

We first restate the lemma and then give the proof.

Lemma. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n = Õ
(

1
ε2

ln(d
δ
)
)

samples from D(W ∗, b∗) (for some non-negative b∗) and outputs b̂(i) and Σ̂(i, i)

for all i ∈ [d] that satisfy

(1− ε)‖W ∗(i, :)‖2
2 ≤ Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖2

2, |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2

with probability at least 1− δ.

Proof. For a fixed i ∈ [d], according to Theorem 1 of Daskalakis et al. (2018),

given Õ(ln(d/δ)/ε2) truncated samples from N(b∗(i), ‖W ∗(i, :)‖2
2,R>0), the

output of Algorithm 2 satisfies (2.9) with probability at least 1− δ/d. Since

b∗(i) ≥ 0, a sample x ∼ N(b∗(i), ‖W ∗(i, :)‖2
2) satisfies x > 0 with probability at

least 1/2. By Hoeffding’s inequality, if we take Õ(ln(d/δ)/ε2) +O(ln(d/δ)) =

Õ(ln(d/δ)/ε2) samples from D(W ∗, b∗), then we are able to obtain Õ(ln(d/δ)/ε2)

truncated samples with probability at least 1 − δ/d. Therefore, if we take

Õ(ln(d/δ)/ε2) samples from D(W ∗, b∗), for a fixed coordinate i ∈ [d], the output

of Algorithm 1 satisfies (2.9) with probability at least 1− 2δ/d. Lemma 2.4.1
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then follows by taking a union bound over all coordinates in [d] and re-scaling

δ to δ/2.

A.2 Proof of Lemma 2.4.3

We first restate the lemma and then give the proof.

Lemma. Let x ∼ D(W ∗, b∗), where b∗ is non-negative. Suppose that b̂ ∈ Rd is

non-negative and satisfies |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2 for all i ∈ [d] and some

ε > 0. Then for all i 6= j ∈ [d],∣∣∣P
x
[x(i) > b̂(i) and x(j) > b̂(j)]− P

x
[x(i) > b∗(i) and x(j) > b∗(j)]

∣∣∣ ≤ ε.

Proof. We first notice that b̂ satisfies

max(0, b∗(i)−ε‖W ∗(i, :)‖2) ≤ b̂(i) ≤ b∗(i)+ε‖W ∗(i, :)‖2, for all i ∈ [d]. (A.1)

To prove Lemma 2.4.3, we only need to prove that (2.12) holds when b̂ is

substituted by its lower bound as well as the upper bound. We focus on

substituting the lower bound here (as the upper bound follows a similar

proof). We assume that ‖W ∗(i, :)‖2 6= 0 for all i ∈ [d] (the proof extends
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straightforwardly to the setting when this is not true).

P
x

[x(i) > max(0, b∗(i)− ε‖W ∗(i, :)‖2) and x(j) > max(0, b∗(j)− ε‖W ∗(j, :)‖2)]

− P
x
[x(i) > b∗(i) and x(j) > b∗(j)]

(a)

≤ P
z∼N(0,Ik)

[W ∗(i, :)T z > −ε‖W ∗(i, :)‖2 and W ∗(j, :)T z > −ε‖W ∗(j, :)‖2]

− P
z∼N(0,Ik)

[W ∗(i, :)T z > 0 and W ∗(j, :)T z > 0]

= P
z∼N(0,Ik)

[−ε < W ∗(i, :)T

‖W ∗(i, :)‖2

z ≤ 0 and − ε < W ∗(j, :)T

‖W ∗(j, :)‖2

z ≤ 0]

+ P
z∼N(0,Ik)

[−ε < W ∗(i, :)T

‖W ∗(i, :)‖2

z ≤ 0 and
W ∗(j, :)T

‖W ∗(j, :)‖2

z > 0]

+ P
z∼N(0,Ik)

[
W ∗(i, :)T

‖W ∗(i, :)‖2

z > 0 and − ε < W ∗(j, :)T

‖W ∗(j, :)‖2

z ≤ 0]

≤ P
z∼N(0,Ik)

[−ε < W ∗(i, :)T

‖W ∗(i, :)‖2

z ≤ 0] + P
z∼N(0,Ik)

[−ε < W ∗(j, :)T

‖W ∗(j, :)‖2

z ≤ 0]

(b)

≤ 2√
2π
ε ≤ ε.

Here (a) is true because x(i) = ReLU
(
W ∗(i, :)T z + b∗(i)

)
and b∗ is non-negative.

Inequality (b) is true because W ∗(i,:)T

‖W ∗(i,:)‖2 z is a one-dimensional Gaussian distri-

bution N(0, 1) and the probability density of N(0, 1) have value no larger than

1/
√

2π.

A.3 Proof of Lemma 2.4.4

We first restate the lemma and then give the proof.

Lemma. For a fixed pair of i 6= j ∈ [d], for any ε, δ ∈ (0, 1), suppose b̂ satisfies

the condition in Lemma 2.4.3, given 80 ln(2/δ)/ε2 samples, with probability at

least 1− δ, | cos(θ̂ij)− cos(θij)| ≤ ε.
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Proof. For a fixed pair i 6= j ∈ [d], let f(x) := 1(x(i) > b̂(i) and x(j) > b̂(j)).

Since the indicator function is bounded, Hoeffding’s inequality implies that if

the number of samples n ≥ ln(2/δ)/(2ε2), then with probability at least 1− δ,∣∣∣∣∣ 1n
n∑

m=1

f(xm)− E
x
[f(x)]

∣∣∣∣∣ ≤ ε. (A.2)

By Lemma 2.4.3, the above equation implies that∣∣∣∣∣ 1n
n∑

m=1

f(xm)− E
x
[1(x(i) > b∗(i) and x(j) > b∗(j))]

∣∣∣∣∣ ≤ 2ε. (A.3)

By Lemma 2.4.2, we have |θ̂ij − θ∗ij| ≤ 4πε. Lemma 2.4.4 follows from the

fact that cos(·) has Lipschitz constant 1. Re-scaling ε gives the desired sample

complexity.

A.4 Proof of Theorem 2.4.5

We first restate the theorem, and then give the proof.

Theorem. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n = Õ
(

1
ε2

ln(d
δ
)
)

samples from D(W ∗, b∗) (for some non-negative b∗) and outputs Σ̂ ∈ Rd×d and

b̂ ∈ Rd that satisfy

‖Σ̂−W ∗W ∗T‖F ≤ ε‖W ∗‖2
F , ‖b̂− b∗‖2 ≤ ε‖W ∗‖F (A.4)

with probability at least 1− δ. Algorithm 1 runs in time Õ
(
d2

ε2
ln(d

δ
)
)

and space

Õ
(
d
ε2

ln(d
δ
) + d2

)
.
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Proof. By Lemma 2.4.1, the first for-loop of Algorithm 1 needs Õ
(

1
ε2

ln(d
δ
)
)

samples and outputs Σ̂(i, i) and b̂(i) that satisfy for all i ∈ [d],

(1− ε)‖W ∗(i, :)‖2
2 ≤ Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖2

2, |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2

(A.5)

with probability at least 1 − δ. Since ε ∈ (0, 1), the above equation implies

that

(1−ε)‖W ∗(i, :)‖2 ≤
√

Σ̂(i, i) ≤ (1+ε)‖W ∗(i, :)‖2, ‖b̂−b∗‖2 ≤ ε‖W‖F . (A.6)

By Lemma 2.4.4, if b̂ satisfies (A.5), then the second for-loop of Algorithm 1

needs O( 1
ε2

ln(d
2

δ
)) samples and outputs θ̂ij that satisfies

| cos(θ̂ij)− cos(θ∗ij)| ≤ ε, for all i 6= j ∈ [d] (A.7)

with probability at least 1− δ. Combining (A.6) and (A.7) gives that for all

i, j ∈ [d],

|Σ̂(i, j)− 〈W ∗(i, :),W ∗(j, :)〉 | ≤ 7ε‖W ∗(i, :)‖2‖W ∗(j, :)‖2 (A.8)

with probability at least 1− 2δ. To see why (A.8) is true, suppose (with loss

of generality) that cos(θij) ≥ 0, then Σ̂(i, j) can be upper bounded by

Σ̂(i, j) =

√
Σ̂(i, i)Σ̂(j, j) cos(θ̂ij)

≤ (1 + ε)2‖W ∗(i, :)‖2‖W ∗(j, :)‖2(cos(θ∗ij) + ε)

= (1 + 2ε+ ε2) 〈W ∗(i, :),W ∗(j, :)〉+ ε(1 + ε)2‖W ∗(i, :)‖2‖W ∗(j, :)‖2

≤ 〈W ∗(i, :),W ∗(j, :)〉+ 3ε 〈W ∗(i, :),W ∗(j, :)〉+ 4ε‖W ∗(i, :)‖2‖W ∗(j, :)‖2

≤ 〈W ∗(i, :),W ∗(j, :)〉+ 7ε‖W ∗(i, :)‖2‖W ∗(j, :)‖2. (A.9)
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The lower bound can be derived in a similar way. Given (A.8), we can bound

‖Σ̂−W ∗W ∗T‖F as

‖Σ̂−W ∗W ∗T‖2
F =

∑
i,j∈[d]

(
Σ̂(i, j)− 〈W ∗(i, :),W ∗(j, :)〉

)2

≤
∑
i,j∈[d]

49ε2‖W ∗(i, :)‖2
2‖W ∗(j, :)‖2

2

≤ 49ε2‖W‖2
F

∑
i∈[d]

‖W ∗(i, :)‖2
2 = 49ε2‖W ∗‖4

F , (A.10)

which holds with probability at least 1 − 2δ. Re-scaling ε and δ gives the

desired bound in Theorem 2.4.5. The final sample complexity is Õ
(

1
ε2

ln(d
δ
)
)

+

O( 1
ε2

ln(d
2

δ
)) = Õ

(
1
ε2

ln(d
δ
)
)
.

We now analyze the time complexity. The first for-loop runs in time

O(dn), where n is the number of input samples. Note that in Step 3 of

Algorithm 3, gradient estimation requires sampling from a truncated normal

distribution. This can be done by sampling from a normal distribution until

it falls into the truncation set. The probability of hitting a truncation set is

lower bounded by a constant (Lemma 7 of (Daskalakis et al., 2018)). The

second for-loop of Algorithm 1 runs in time O(d2n). The space complexity is

determined by the space required to store n samples and the matrix Σ̂ ∈ Rd×d,

which is O(dn+ d2).

A.5 Proof of Corollary 2.4.6

We first restate the corollary and then give the proof.

Corollary. Suppose that W ∗ ∈ Rd×d is full-rank. Let κ be the condition
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number of W ∗W ∗T . For any ε ∈ (0, 1/2] and δ ∈ (0, 1), Algorithm 1 takes

n = Õ
(
κ2d2

ε2
ln(d

δ
)
)

samples from D(W ∗, b∗) (for some non-negative b∗) and

outputs a distribution D(Σ̂1/2, b̂) that satisfies

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ ε,

with probability at least 1 − δ. Algorithm 1 runs in time Õ
(
κ2d4

ε2
ln(d

δ
)
)

and

space Õ
(
κ2d3

ε2
ln(d

δ
)
)

.

Proof. Let Σ = W ∗W ∗T . We will prove that given Õ
(
κ2d2

ε2
ln(d

δ
)
)

samples, the

output of Algorithm 1 satisfies

‖Σ−1/2(̂b− b∗)‖2 ≤ ε, ‖Σ−1/2Σ̂Σ−1/2 − I‖F ≤ ε. (A.11)

The above implies that the TV distance between D(Σ̂1/2, b̂) and D(W ∗, b∗) is

less than ε. To see why, note that

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ TV

(
N(̂b, Σ̂),N(b∗,Σ)

)
≤
√

KL
(
N(̂b, Σ̂)||N(b∗,Σ)

)
/2. (A.12)

The first inequality follows from the data processing inequality for f -divergence

given by Lemma A.6.3 in Appendix A.6 (see also (Ashtiani et al., 2018, Fact

A.5)): TV(f(X), f(Y )) ≤ TV(X, Y ) for any function f and random variables

X, Y over the same space. The second inequality follows from the Pinsker’s

inequality (Tsybakov, 2009, Lemma 2.5). The KL divergence between two

Gaussian distributions can be computed as KL
(
N(̂b, Σ̂)||N(b∗,Σ)

)
=

1

2

(
tr(Σ−1Σ̂− I)− ln(det(Σ−1Σ̂)) + ‖Σ−1/2(̂b− b∗)‖2

2

)
. (A.13)
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Let λ1, ..., λd be the eigenvalues of Σ−1Σ̂. We have

tr(Σ−1Σ̂−I)− ln(det(Σ−1Σ̂)) =
d∑
i=1

(λi−1)− ln(Πd
i=1λi) =

d∑
i=1

(λi−1− ln(λi)).

(A.14)

Suppose that (A.11) holds with ε ≤ 1/2, since Σ−1/2Σ̂Σ−1/2 and Σ−1Σ̂ have

the same eigenvalues,

ε2 ≥ ‖Σ−1/2Σ̂Σ−1/2 − I‖2
F =

d∑
i=1

(λi − 1)2 ≥
d∑
i=1

(λi − 1− ln(λ)), (A.15)

where the last inequality follows from the fact that x− 1− ln(x) ≤ (x− 1)2

for x ≥ 1/2. Since ε ≤ 1/2, we have (λi − 1)2 ≤ 1/4, which implies that

λi ∈ [1/2, 3/2]. Substituting (A.15) into (A.14), and combining (A.13) and

(A.12) give that the TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ ε.

The only thing left is to prove that (A.11) holds. According to Theo-

rem 2.4.5, given Õ
(

1
η2 ln(d

δ
)
)

samples, we have

‖Σ̂− Σ‖F ≤ η‖W ∗‖2
F , ‖b̂− b∗‖2 ≤ η‖W ∗‖F . (A.16)

We can bound ‖Σ−1/2(̂b− b∗)‖2 and ‖Σ−1/2Σ̂Σ−1/2 − I‖F as

‖Σ−1/2(̂b− b∗)‖2 ≤ ‖Σ−1/2‖2‖b̂− b‖2 ≤ ‖Σ−1/2‖2η‖W ∗‖F ≤ η
√
κd.

‖Σ−1/2Σ̂Σ−1/2 − I‖F = ‖Σ−1/2(Σ̂− Σ)Σ−1/2‖F ≤ ‖Σ−1/2‖2
2‖Σ̂− Σ‖F ≤ ηκd.

Now setting η = ε/(κd) gives (A.11).

A.6 Proof of Theorem 2.5.1

To establish a lower bound for parameter estimation, the key step is to

construct a local packing set such that their parameter distance is large but
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their KL divergence is small (and hence it is hard to distinguish them without

observing many samples). We remark that our way of constructing this local

packing is similar to the one used in proving the minimax rate for Gaussian

mean estimation (see, e.g., (Duchi, 2019)), despite the fact that our class of

distributions is not Gaussian.

We will start by stating three results in information theory and statistics.

Proofs of Lemma A.6.1, A.6.2, and A.6.3 can be found in, e.g., (Duchi, 2019).

Lemma A.6.1. (Gilbert-Varshamov bound). There is a subset V of the d-

dimensional hypercube {0, 1}d of size |V| ≥ exp(d/8) such that the `1-distance

‖v − v′‖1 =
d∑
j=1

1(vj 6= v′j) ≥ d/4, for any v, v′ ∈ V. (A.17)

Lemma A.6.2. (Fano’s inequality). Let V be a random variable taking values

uniformly in the finite set V with cardinality |V| ≥ 2. Conditioned on V = v,

we draw a sample X ∼ Pv. The KL divergence of the distributions {Pv}v∈V

satisfy

KL(Pv ‖ Pv′) ≤ β, for any v, v′ ∈ V. (A.18)

For any Markov chain V → X → V̂ ,

P[V̂ 6= V ] ≥ 1− β + ln(2)

ln(|V|)
. (A.19)
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Lemma A.6.3. (Data processing inequality for f-divergence). Let f1 and

f2 be the distributions of two random variables x1 and x2. Let g1 and g2 be

the distributions of two random variables T (x1) and T (x2), where T (·) is any

function. For any f -divergence Df (· ‖ ·), we have

Df (f1 ‖ f2) ≥ Df (g1 ‖ g2). (A.20)

We are now ready to prove Theorem 2.5.1, which is restated below.

Theorem. Let σ > 0 be a fixed and known scalar. Let Id be the identity matrix

in Rd. Let S := {D(W, b) : W = σId, b ∈ Rd non-negative} be a class of

distributions in Rd. Any algorithm that learns S to satisfy ‖b̂− b∗‖2 ≤ ε‖W ∗‖F

with success probability at least 2/3 requires Ω( 1
ε2

) samples.

Proof. Let V ⊂ {0, 1}d be a finite set satisfying the property in Lemma A.6.1.

Given an ε ∈ (0, 1), we can construct a finite set of distributions {Pv}v∈V as

follows:

Pv = D(σId, bv), where bv = 6εσv. (A.21)

Clearly {Pv}v∈V belong to the class of the distributions that we are interested

in. Furthermore, they satisfy two properties:

• Property 1: ‖bv − bv′‖2 ≥ 3εσ
√
d and |V| ≥ exp(d/8).

• Property 2: KL(Pv ‖ Pv′) ≤ 18dε2.

126



Assuming that the above two properties hold, we can use Fano’s inequal-

ity (Lemma A.6.2) to obtain a sample complexity lower bound for learning

{Pv}v∈V. Let V be a random variable taking values uniformly in V. Conditioned

on V = v, we draw n i.i.d. samples Xn ∼ P n
v , where P n

v represents a product

distribution of n Pv’s. Given Xn, our goal is to output an index v̂ ∈ V. By

Lemma A.6.2, any estimator will suffer an estimation error larger than

P[V̂ 6= V ] ≥ 1− 18ndε2 + ln(2)

d/8
, (A.22)

which follows from the fact that |V| ≥ exp(d/8) (Property 1) and KL(P n
v ||P n

v′) =

nKL(Pv||Pv′) ≤ 18ndε2 (Property 2). Eq. (A.22) implies that any estimator

that estimates the index correctly with probability at least 2/3 must observe

Ω( 1
ε2

) samples. Furthermore, by Property 1, ‖bv−bv′‖2 ≥ 3εσ
√
d, any algorithm

that learns S to satisfy ‖b̂− b∗‖2 ≤ ε‖W ∗‖F = εσ
√
d can be used to estimate V

(we can just choose v̂ ∈ V such that bv̂ is closest to b̂). Therefore, any algorithm

that learns S to satisfy ‖b̂− b∗‖2 ≤ ε‖W ∗‖F with success probability at least

2/3 requires Ω( 1
ε2

) samples.

The only thing left is to show that Property 1 and 2 hold. Property 1

follows from Lemma A.6.1 and the way we construct Pv. Property 2 is true

because of the following two facts.

• Fact 1: The KL-divergence between two Gaussian distributions can be

computed as

KL(N(bv, σ
2Id) ‖ N(bv′ , σ

2Id)) =
‖bv − bv′‖2

2

2σ2
= 18dε2. (A.23)
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• Fact 2: KL(Pv ‖ Pv′) ≤ KL(N(bv, σ
2Id) ‖ N(bv′ , σ

2Id)), which follows

from Lemma A.6.3 and the fact that KL-divergence is an instance of

f -divergence.

A.7 Proof of Theorem 2.5.2

We first restate the theorem, and then give the proof.

Theorem. Let S := {D(W, 0) : W ∈ Rd×d full rank} be a set of distributions

in Rd. Any algorithm that learns S within total variation distance ε and success

probability at least 2/3 requires Ω( d
ε2

) samples.

Proof. Similar to the proof of Theorem 2.5.1, we construct a local packing of

S for which their pairwise TV distance is large while their KL-divergence is

small. Let V ⊂ {0, 1}d be a finite set satisfying the property in Lemma A.6.1.

Given an ε ∈ (0, 1), define λ = C · ε/
√
d, where C is a universal constant to be

specified later, we can construct a finite set of distributions {Pv}v∈V as follows:

Pv = D(Wv, 0), where Wv = Id + λ · diag(v). (A.24)

Here diag(·) : Rd → Rd×d defines a diagonal matrix. This finite set of distribu-

tions satisfies two properties:

• Property 1: TV(Pv, Pv′) ≥ 3ε and |V| ≥ exp(d/8).
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• Property 2: KL(Pv ‖ Pv′) = O(ε2).

Given the above two properties, we can use Fano’s inequality (Lemma A.6.2)

in a way similar to the proof of Theorem 2.5.1 to conclude that any estimator

that identifies Pv from i.i.d. samples with success probability at least 2/3 must

require Ω(d/ε2) samples. Since TV(Pv, Pv′) ≥ 3ε, any algorithm that learns

S within TV distance ε can be used to estimate {Pv}v∈V (we can just choose

Pv that has the smallest TV distance to the output of the algorithm). This

implies that any algorithm that learns S within TV distance ε with success

probability at least 2/3 requires Ω(d/ε2) samples.

The only thing left is to show that the two properties hold for our

packing set {Pv}v∈V. To prove Property 2, note that

KL(Pv ‖ Pv′)
(a)

≤ KL(N(0,WvW
T
v ) ‖ N(0,Wv′W

T
v′ ))

(b)
= O(λ2d) = O(ε2),

(A.25)

where (a) follows from Lemma A.6.3 and the fact that KL-divergence belongs

to f -divergence; (b) follows from exactly computing the KL-divergence between

the two Gaussian distributions. Before computing that, we need a few more

notations. Specifically, let Sv = {i ∈ [d] : Wv(i, i) = 1 + λ} be the set of

coordinates that the corresponding diagonal entry of Wv is 1 + λ. We use

Sv − Sv′ = {i ∈ Sv : i 6= Sv′} to denote the difference between two sets. For

simplicity, we write Σv = WvW
T
v . Now we can compute the KL-divergence
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between the two Gaussian distributions as

2KL(N(0,WvW
T
v ) ‖ N(0,Wv′W

T
v′ ))

= Tr
(
Σ−1
v′ Σv − Id

)
+ ln (det(Σv′))− ln (det(Σv))

= |Sv − Sv′ |
(
(1 + λ)2 − 1

)
+ |Sv′ − Sv|

(
1

(1 + λ)2
− 1

)
+ 2|Sv′ | ln(1 + λ)− 2|Sv| ln(1 + λ)

(a)

≤ |Sv|
[
(1 + λ)2 − 1− 2 ln(1 + λ)

]
+ |Sv′|

[
2 ln(1 + λ) +

1

(1 + λ)2
− 1

]
(b)

≤ |Sv|
(

2λ+ λ2 − 2λ

1 + λ

)
+ |Sv′|

(
2λ− 2λ+ λ2

(1 + λ)2

)
= |Sv|

3λ2 + λ3

1 + λ
+ |Sv′|

3λ2 + 2λ3

(1 + λ)2

(c)
= O(dλ2) = O(ε2),

where (a) follows from |Sv| ≤ |Sv − Sv′ |, (b) follows from ln(1 + x) ≤ x, and (c)

is true because |Sv| ≤ d and λ ∈ (0, 1). Substituting λ = O(ε/
√
d) gives the

final result.

To prove Property 1, note that |V| ≤ exp(d/8) directly follows from

Lemma A.6.1. The key challenge lies in proving a lower bound for TV(Pv, Pv′).

Note that the data-processing inequality (i.e., Lemma A.6.3) only implies

that TV(Pv, Pv′) ≤ TV(N(0,WvW
T
v ),N(0,Wv′W

T
v′ )), so we cannot use the TV

distance for Gaussian to obtain a lower bound on the TV distance for rectified

Gaussian. Our proof strategy instead is to directly compute the TV distance

for the specially-constructed {Pv}v∈V (computing the exact TV distance is hard

for general rectified Gaussian distributions). Specifically, let Σv = WvW
T
v , our

proof uses the following two facts:
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• Fact 1: TV(N(0,Σv),N(0,Σv′)) ≥ 0.01‖Σ−1
v Σv′ − Id‖F ≥ C ′ ·λ

√
d, where

C ′ is a universal constant.

• Fact 2: Let Qv be the probability density function of a multivariate normal

distribution N(0,Σv). Let Rd
>0 = {x ∈ Rd : x > 0 coordinate-wise} be

the (open) positive orthant. Then

‖Qv −Qv′‖1 =

∫
Rd

|Qv(x)−Qv′(x)| dx = 2d
∫
Rd
>0

|Qv(x)−Qv′(x)| dx.

The first inequality in Fact 1 follows from (Devroye et al., 2018, Theorem

1.1). The second inequality follows from our definition of Σv. Specifically, the

diagonal entry of Σv is either 1 or 1 + λ. By Lemma A.6.1, we know that Σv

and Σv′ have at least d/4 different diagonal entries. Since the total variation

distance is symmetric, i.e., TV(N(0,Σv),N(0,Σv′)) = TV(N(0,Σv′),N(0,Σv)),

we can w.l.o.g assume that among the diagonal entries that Σv is different from

Σv′ , Σv′ has more entries with value 1 + λ than entries with value 1. This then

implies that ‖Σ−1
v Σv′ − Id‖F = Ω(λ

√
d).

Fact 2 is true because N(0,Σv) has zero mean and diagonal covariance

matrix, and hence the value of Qv(x) is invariant to the sign of x’s coordinates.

Now we prove a lower bound on TV(Pv, Pv′), assuming that are all the

d diagonal entries of Σv and Σv′ are different. Let Ω ⊆ [d] be any subset of

the d coordinates. For any Ω, let xΩ ∈ R|Ω| be the sub-vector of x ∈ Rd over

the coordinates in Ω. Let Ωc = [d] − Ω be its complement. We can re-write

TV(Pv, Pv′) as a summation of integrals, where each integral is over the space
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AΩ = {x ∈ Rd : xΩ > 0, xΩc = 0}:

TV(Pv, Pv′) = ‖Pv − Pv′‖1 =
∑

Ω

∫
x∈AΩ

|Pv(x)− Pv′(x)| dx. (A.26)

We now give a lower bound for every integral. Let Σv,Ω ∈ R|Ω|×|Ω| be the

sub-matrix of Σv over the coordinates in Ω. Since Σv has zero mean and

diagonal covariance matrix, for any Ω ⊆ [d] and any x ∈ AΩ, we have Pv(x) =

(1
2
)|Ω

c|Pv,Ω(xΩ), where Pv,Ω is the probability density function of the normal

distribution N(0,Σv,Ω). By Fact 1 and 2, we have∫
x∈AΩ

|Pv(x)− Pv′(x)| dx = (
1

2
)|Ω

c| · 1

2|Ω|
TV(N(0,Σv,Ω),N(0,Σv′,Ω))

≥
C ′ · λ

√
|Ω|

2d
. (A.27)

Combining (A.26) and (A.27) gives

TV(Pv, Pv′) ≥
d∑
i=0

(
d

i

)
C ′ · λ

√
i

2d

≥
d∑

i=bd/2c

(
d

i

)
C ′ · λ

√
bd/2c

2d

(a)

≥
C ′ · λ

√
bd/2c

2d
1

2

d∑
i=0

(
d

i

)
(b)
=
C ′ · λ

√
bd/2c

2

(c)
= 3ε, (A.28)

where (a) follows from the fact that
(
d
i

)
=
(
d
d−i

)
, (b) is true because

∑
i

(
d
i

)
= 2d,

and (c) holds if we choose λ = C · ε/
√
d with a proper constant C.

So far we have proved that TV(Pv, Pv′) ≥ 3ε when all the d diagonal

entries of Σv and Σv′ are different. The proof can be easily extended when only
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a subset of their diagonal entries are different. Let Ω ⊂ [d] be the subset of d

diagonal entries that Σv and Σv′ are different. By Lemma A.6.1, we know that

|Ω| ≥ d/4. The definition of TV distance gives

TV(Pv, Pv′) =

∫
x

|Pv(x)− Pv′(x)| dx

(a)
=

∫
xΩc

∫
xΩ

|PvΩ(xΩ)PvΩc (xΩc

)− P(v′)Ω(xΩ)P(v′)Ωc (xΩc

)| dxΩ dxΩc

(b)
=

∫
xΩ

|PvΩ(xΩ)− P(v′)Ω(xΩ)| dxΩ

∫
xΩc

PvΩc (xΩc

) dxΩc

=

∫
xΩ

|PvΩ(xΩ)− P(v′)Ω(xΩ)| dxΩ

= TV(PvΩ , P(v′)Ω). (A.29)

Here equality (a) uses the fact that Pv and Pv′ have independent coordinates

as Σv and Σv′ are diagonal matrices. Equality (b) follows from the definition

of Ω: the diagonal entries in Ωc are the same for Σv and Σv′ , and hence,

PvΩc (xΩc
) = P(v′)Ωc (xΩc

).

By (A.29), we have proved that the TV distance between Pv and Pv′

equals the TV distance between the two distributions over the coordinates in

Ω. By definition, ΣvΩ ∈ R|Ω|×|Ω| and Σ(v′)Ω ∈ R|Ω|×|Ω| have different diagonal

entries, and |Ω| ≥ d/4, we can use the same proof in (A.28) to show that

TV(PvΩ , P(v′)Ω) ≥ 3ε for small enough λ.
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Appendix B

Appendix for Chapter 3

B.1 Related Work on Learning Ising Models

For the special case of learning Ising models (i.e., binary variables), we

compare the sample complexity among different graph recovery algorithms

in Table B.1. Note that most of the algorithms listed in this table are only

designed for learning Ising models instead of general pairwise graphical models.

Hence, they are not presented in Table 3.1.

As mentioned in the Introduction, Ravikumar et al. (2010) consider `1-

regularized logistic regression for learning Ising models in the high-dimensional

setting. They require incoherence assumptions that ensure, via conditions on

sub-matrices of the Fisher information matrix, that sparse predictors of each

node are hard to confuse with a false set. Their analysis obtains significantly

better sample complexity compared to what is possible when these extra

assumptions are not imposed (see (Bento and Montanari, 2009)). Others have

also considered `1-regularization (Lee et al., 2007; Yuan and Lin, 2007; Banerjee

et al., 2008; Jalali et al., 2011; Yang et al., 2012; Aurell and Ekeberg, 2012)

for structure learning of Markov random fields but they all require certain

assumptions about the graphical model and hence their methods do not work
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for general graphical models. The analysis of (Ravikumar et al., 2010) is of

essentially the same convex program as this work (except that we have an

additional thresholding procedure). The main difference is that they obtain a

better sample guarantee but require significantly more restrictive assumptions.

In the general setting with no restrictions on the model, Santhanam and

Wainwright (2012) provide an information-theoretic lower bound on the number

of samples needed for graph recovery. This lower bound depends logarithmically

on n, and exponentially on the width λ, and (somewhat inversely) on the

minimum edge weight η. We will find these general broad trends, but with

important differences, in the other algorithms as well.

Bresler (2015) provides a greedy algorithm and shows that it can learn

with sample complexity that grows logarithmically in n, but doubly exponen-

tially in the width λ and also exponentially in 1/η. It is thus suboptimal with

respect to its dependence on λ and η.

Vuffray et al. (2016) propose a new convex program (i.e. different from

logistic regression), and for this they are able to show a single-exponential

dependence on λ. There is also low-order polynomial dependence on λ and

1/η. Note that given λ and η, the degree is bounded by d ≤ λ/η (the equality

is achieved when every edge has the same weight and there is no external field).

Therefore, their sample complexity can scale as worse as 1/η5. Later, the

same authors (Lokhov et al., 2018) prove a similar result for the `1-regularized

logistic regression using essentially the same proof technique as (Vuffray et al.,

2016).
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Rigollet and Hütter (2017) analyze the `1-constrained logistic regression

for learning Ising models. Their sample complexity1 has a better dependence on

1/η (1/η4 vs 1/η5) than (Lokhov et al., 2018). However, näıvely extending their

analysis to the `2,1-constrained logistic regression will give a sample complexity

exponential in the alphabet size2.

In Chapter 3, we analyze the `2,1-constrained logistic regression for

learning discrete pairwise graphical models with general alphabet. Our proof

uses a sharp generalization bound for constrained logistic regression, which is

different from (Lokhov et al., 2018; Rigollet and Hütter, 2017). For Ising models

(shown in Table B.1), our sample complexity matches that of (Klivans and

Meka, 2017). For non-binary pairwise graphical models (shown in Table 3.1),

our sample complexity improves the state-of-the-art result.

1Lemma 5.21 in (Rigollet and Hütter, 2017) has a typo: The upper bound should depend
on exp(2λ). Accordingly, Theorem 5.23 should depend on exp(4λ) rather than exp(3λ).

2This is because the Hessian of the population loss has a lower bound that depends on
exp(−2λ

√
k) for ‖w‖2,1 ≤ λ

√
k and ‖x‖2,∞ ≤ 1.
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Paper Assumptions Sample complexity
(N)

Information-
theoretic lower
bound
(Santhanam and
Wainwright,
2012)

1. Model width ≤ λ, and λ ≥ 1 max{ ln(n)
2η tanh(η)

,

2. Degree ≤ d d
8

ln( n
8d

),
3. Minimum edge weight ≥ η > 0 exp(λ) ln(nd/4−1)

4ηd exp(η)
}

4. External field = 0

`1-regularized
logistic regres-
sion (Ravikumar
et al., 2010)

Q∗ is the Fisher information matrix,

O(d3 ln(n))

S is set of neighbors given a variable.
1. Dependency: ∃ Cmin > 0 such

that eigenvalues of Q∗SS ≥ Cmin

2. Incoherence: ∃ α ∈ (0, 1] such
that ‖Q∗ScS(Q∗SS)−1‖∞ ≤ 1− α

3. Regularization parameter:

λN ≥ 16(2−α)
α

√
ln(n)
N

4. Min edge weight ≥ 10
√
dλN/Cmin

5. External field = 0

6. Success prob. ≥ 1− 2e−O(λ2
NN)

Greedy algo-
rithm (Bresler,
2015)

1. Model width ≤ λ
O(exp( exp(O(dλ))

ηO(1) )
2. Degree ≤ d
3. Minimum edge weight ≥ η > 0 · ln(n

ρ
))

4. Probability of success ≥ 1− ρ

Interaction
Screening (Vuf-
fray et al.,
2016)

1. Model width ≤ λ
2. Degree ≤ d O(max{d, 1

η2}
3. Minimum edge weight ≥ η > 0 d3 exp(6λ) ln(n

ρ
))

4. Regularization = 4
√

ln(3n2/ρ)
N

5. Probability of success ≥ 1− ρ

`1-regularized
logistic regres-
sion (Lokhov
et al., 2018)

1. Model width ≤ λ
2. Degree ≤ d O(max{d, 1

η2}
3. Minimum edge weight ≥ η > 0 d3 exp(8λ) ln(n

ρ
))

4. Regularization O(
√

ln(n2/ρ)
N

)

5. Probability of success ≥ 1− ρ
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Continued from previous page
Paper Assumptions Sample complexity

(N)
`1-constrained
logistic regres-
sion (Rigollet and
Hütter, 2017)

1. Model width ≤ λ
O(λ

2 exp(8λ)
η4 ln(n

ρ
))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ

Sparsitron (Kli-
vans and Meka,
2017)

1. Model width ≤ λ
O(λ

2 exp(12λ)
η4 ln( n

ρη
))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ
`1-constrained
logistic
regression (Wu
et al., 2019c)

1. Model width ≤ λ
O(λ

2 exp(12λ)
η4 ln(n

ρ
))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ

Table B.1: Sample complexity comparison for learning Ising models. The
second column lists the assumptions in their analysis. Given λ and η, the
degree is bounded by d ≤ λ/η, with equality achieved when every edge has the
same weight and there is no external field.

B.2 Proof of Lemma 3.3.1 and Lemma 3.3.2

The proof of Lemma 3.3.1 relies on the following lemmas. The first

lemma is a generalization error bound for any Lipschitz loss of linear functions

with bounded ‖w‖1 and ‖x‖∞.

Lemma B.2.1. (see, e.g., Corollary 4 of (Kakade et al., 2009) and Theorem

26.15 of (Shalev-Shwartz and Ben-David, 2014)) Let D be a distribution on

X× Y, where X = {x ∈ Rn : ‖x‖∞ ≤ X∞}, and Y = {−1, 1}. Let ` : R→ R be
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a loss function with Lipschitz constant L`. Define the expected loss L(w) and

the empirical loss L̂(w) as

L(w) = E
(x,y)∼D

`(y 〈w, x〉), L̂(w) =
1

N

N∑
i=1

`(yi
〈
w, xi

〉
), (B.1)

where {xi, yi}Ni=1 are i.i.d. samples from distribution D. Define W = {w ∈ Rn :

‖w‖1 ≤ W1}. Then with probability at least 1− ρ over the samples, we have

that for all w ∈W,

L(w) ≤ L̂(w) + 2L`X∞W1

√
2 ln(2n)

N
+ L`X∞W1

√
2 ln(2/ρ)

N
. (B.2)

Lemma B.2.2. (Pinsker’s inequality) Let DKL(a||b) := a ln(a/b) + (1 −

a) ln((1 − a)/(1 − b)) denote the KL-divergence between two Bernoulli dis-

tributions (a, 1− a), (b, 1− b) with a, b ∈ [0, 1]. Then

(a− b)2 ≤ 1

2
DKL(a||b). (B.3)

Lemma B.2.3. Let D be a distribution on X × {−1, 1}. For (X, Y ) ∼ D,

P[Y = 1|X = x] = σ(〈w∗, x〉), where σ(x) = 1/(1+e−x) is the sigmoid function.

Let L(w) be the expected logistic loss:

L(w) = E
(x,y)∼D

ln(1 + e−y〈w,x〉)

= E
(x,y)∼D

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]. (B.4)
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Then for any w, we have

L(w)− L(w∗) = E
(x,y)∼D

[DKL(σ(〈w∗, x〉)||σ(〈w, x〉))], (B.5)

where DKL(a||b) := a ln(a/b) + (1 − a) ln((1 − a)/(1 − b)) denotes the KL-

divergence between two Bernoulli distributions (a, 1− a), (b, 1− b) with a, b ∈

[0, 1].

Proof. Simply plugging in the definition of the expected logistic loss L(·) gives

L(w)− L(w∗)

= E
(x,y)∼D

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]

+ E
(x,y)∼D

[
y + 1

2
ln(σ(〈w∗, x〉)) +

1− y
2

ln(1− σ(〈w∗, x〉))]

= E
x
E
y|x

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]

+ E
x
E
y|x

[
y + 1

2
ln(σ(〈w∗, x〉)) +

1− y
2

ln(1− σ(〈w∗, x〉))]

(a)
= E

x
[−σ(〈w∗, x〉) ln(σ(〈w, x〉))− (1− σ(〈w∗, x〉)) ln(1− σ(〈w, x〉))]

+ E
x
[σ(〈w∗, x〉) ln(σ(〈w∗, x〉)) + (1− σ(〈w∗, x〉)) ln(1− σ(〈w∗, x〉))]

= E
x

[
σ(〈w∗, x〉) ln

(
σ(〈w∗, x〉)
σ(〈w, x〉)

)
+ (1− σ(〈w∗, x〉)) ln

(
1− σ(〈w∗, x〉)
1− σ(〈w, x〉)

)]
= E

(x,y)∼D
[DKL(σ(〈w∗, x〉)||σ(〈w, x〉))],

where (a) follows from the fact that

Ey|x[y] = 1 · P[y = 1|x] + (−1) · P[y = −1|x] = 2σ(〈w∗, x〉)− 1.

140



We are now ready to prove Lemma 3.3.1 (which is restated below):

Lemma. Let D be a distribution on {−1, 1}n×{−1, 1} where for (X, Y ) ∼ D,

P[Y = 1|X = x] = σ(〈w∗, x〉). We assume that ‖w∗‖1 ≤ 2λ for a known λ ≥ 0.

Given N i.i.d. samples {(xi, yi)}Ni=1, let ŵ be any minimizer of the following

`1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (B.6)

Given ρ ∈ (0, 1) and ε > 0, suppose that N = O(λ2(ln(n/ρ))/ε2), then with

probability at least 1− ρ over the samples, we have that E(x,y)∼D[(σ(〈w∗, x〉)−

σ(〈ŵ, x〉))2] ≤ ε.

Proof. We first apply Lemma B.2.1 to the setup of Lemma 3.3.1. The loss

function `(z) = ln(1 + e−z) defined above has Lipschitz constant L` = 1. The

input sample x ∈ {−1, 1}n satisfies ‖x‖∞ ≤ 1. Let W = {w ∈ Rn×k : ‖w‖1 ≤

2λ}. According to Lemma B.2.1, with probability at least 1 − ρ/2 over the

draw of the training set, we have that for all w ∈W,

L(w) ≤ L̂(w) + 4λ

√
2 ln(2n)

N
+ 2λ

√
2 ln(4/ρ)

N
. (B.7)

where L(w) = E(x,y)∼D ln(1 + e−y〈w,x〉) and L̂(w) =
∑N

i=1 ln(1 + e−y
i〈w,xi〉)/N

are the expected loss and empirical loss.

Let N = C · λ2 ln(8n/ρ)/ε2 for a global constant C, then (B.7) implies

that with probability at least 1− ρ/2,

L(w) ≤ L̂(w) + ε, for all w ∈W. (B.8)
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We next prove a concentration result for L̂(w∗). Here w∗ is the true

regression vector and is assumed to be fixed. First notice that ln(1 + e−y〈w
∗,x〉)

is bounded because |y 〈w∗, x〉 | ≤ 2λ. Besides, the ln(1 + e−z) has Lipschitz

1, so | ln(1 + e−2λ) − ln(1 + e2λ)| ≤ 4λ. Hoeffding’s inequality gives that

P[L̂(w∗) − L(w∗) ≥ t] ≤ e−2Nt2/(4λ)2
. Let N = C ′ · λ2 ln(2/ρ)/ε2 for a global

constant C ′, then with probability at least 1− ρ/2 over the samples,

L̂(w∗) ≤ L(w∗) + ε. (B.9)

Then the following holds with probability at least 1− ρ:

L(ŵ)
(a)

≤ L̂(ŵ) + ε
(b)

≤ L̂(w∗) + ε
(c)

≤ L(w∗) + 2ε, (B.10)

where (a) follows from (B.8), (b) follows from the fact ŵ is the minimizer of

L̂(w), and (c) follows from (B.9).

So far we have shown that L(ŵ)− L(w∗) ≤ 2ε with probability at least

1− ρ. The last step is to lower bound L(ŵ)− L(w∗) by E(x,y)∼D(σ(〈w∗, x〉)−

σ(〈w, x〉))2 using Lemma B.2.2 and Lemma B.2.3.

E
(x,y)∼D

(σ(〈w∗, x〉)− σ(〈w, x〉))2
(d)

≤ E
(x,y)∼D

DKL(σ(〈w∗, x〉)||σ(〈w, x〉))/2

(e)
= (L(ŵ)− L(w∗))/2

(f)

≤ ε,

where (d) follows from Lemma B.2.2, (e) follows from Lemma B.2.3, and (f)

follows from (B.10). Therefore, we have that E(x,y)∼D(σ(〈w∗, x〉)−σ(〈w, x〉))2 ≤

ε with probability at least 1 − ρ, if the number of samples satisfies N =

O(λ2 ln(n/ρ)/ε2).
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The proof of Lemma 3.3.2 is identical to the proof of Lemma 3.3.1,

except that it relies on the following generalization error bound for Lipschitz

loss functions with bounded `2,1-norm.

Lemma B.2.4. Let D be a distribution on X × Y, where X = {x ∈ Rn×k :

‖x‖2,∞ ≤ X2,∞}, and Y = {−1, 1}. Let ` : R → R be a loss function with

Lipschitz constant L`. Define the expected loss L(w) and the empirical loss

L̂(w) as

L(w) = E
(x,y)∼D

`(y 〈w, x〉), L̂(w) =
1

N

N∑
i=1

`(yi
〈
w, xi

〉
), (B.11)

where {xi, yi}Ni=1 are i.i.d. samples from distribution D. Define W = {w ∈

Rn×k : ‖w‖2,1 ≤ W2,1}. Then with probability at least 1− ρ over the draw of N

samples, we have that for all w ∈W,

L(w) ≤ L̂(w) + 2L`X2,∞W2,1

√
6 ln(n)

N
+ L`X2,∞W2,1

√
2 ln(2/ρ)

N
. (B.12)

Lemma B.2.4 can be readily derived from the existing results. First,

notice that the dual norm of ‖·‖2,1 is ‖·‖2,∞. Using Corollary 14 in (Kakade et al.,

2012), Theorem 1 in (Kakade et al., 2009), and the fact that ‖w‖2,q ≤ ‖w‖2,1

for q ≥ 1, we conclude that the Rademacher complexity of the function class

F := {x → 〈w, x〉 : ‖w‖2,1 ≤ W2,1} is at most X2,∞W2,1

√
6 ln(n)/N . We

can then obtain the standard Rademacher-based generalization bound (see,

e.g., (Bartlett and Mendelson, 2002) and Theorem 26.5 in (Shalev-Shwartz and

Ben-David, 2014)) for bounded Lipschitz loss functions.
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We omit the proof of Lemma 3.3.2 since it is the same as that of

Lemma 3.3.1.

B.3 Proof of Lemma 3.3.3

Lemma 3.3.3 is restated below.

Lemma. Let D be a δ-unbiased distribution on Sn, where S is the alphabet

set. For X ∼ D, any i ∈ [n], the distribution of X−i is also δ-unbiased.

Proof. For any j 6= i ∈ [n], any a ∈ S, and any x ∈ Sn−2, we have

P[Xj = a|X[n]\{i,j} = x]

=
∑
b∈S

P[Xj = a,Xi = b|X[n]\{i,j} = x]

=
∑
b∈S

P[Xi = b|X[n]\{i,j} = x] · P[Xj = a|Xi = b,X[n]\{i,j} = x]

(a)

≥ δ
∑
b∈S

P[Xi = b|X[n]\{i,j} = x]

= δ, (B.13)

where (a) follows from the fact that X ∼ D and D is a δ-unbiased distribution.

Since (B.13) holds for any j 6= i ∈ [n], any a ∈ S, and any x ∈ Sn−2, by

definition, the distribution of X−i is δ-unbiased.

B.4 Proof of Lemma 3.3.4

The lemma is restated below, followed by its proof.
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Lemma. Let D(W,Θ) be a pairwise graphical model distribution with alphabet

size k and width λ(W,Θ). Then D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k.

Specifically, an Ising model distribution D(A, θ) is e−2λ(A,θ)/2-unbiased.

Proof. Let X ∼ D(W,Θ), and assume that X ∈ [k]n. For any i ∈ [n], any

a ∈ [k], and any x ∈ [k]n−1, we have

P[Xi = a|X−i = x] =
exp(

∑
j 6=iWij(a, xj) + θi(a))∑

b∈[k] exp(
∑

j 6=iWij(b, xj) + θi(b))

=
1∑

b∈[k] exp(
∑

j 6=i(Wij(b, xj)−Wij(a, xj)) + θi(b)− θi(a))

(a)

≥ 1

k · exp(2λ(W,Θ))
= e−2λ(W,Θ)/k, (B.14)

where (a) follows from the definition of model width. The lemma then follows

(Ising model corresponds to the special case of k = 2).

B.5 Proof of Lemma 3.3.5 and Lemma 3.3.6

The proof relies on the following basic property of the sigmoid function

(see Claim 4.2 of (Klivans and Meka, 2017)):

|σ(a)− σ(b)| ≥ e−|a|−3 ·min(1, |a− b|), ∀a, b ∈ R. (B.15)

We first prove Lemma 3.3.5 (which is restated below).

Lemma. Let D be a δ-unbiased distribution on {−1, 1}n. Suppose that for two

vectors u,w ∈ Rn and θ′, θ′′ ∈ R, EX∼D[(σ(〈w,X〉+ θ′)−σ(〈u,X〉+ θ′′))2] ≤ ε,

where ε < δe−2‖w‖1−2|θ′|−6. Then ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·
√
ε/δ.
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Proof. For any i ∈ [n], any X ∈ {−1, 1}n, let Xi ∈ {−1, 1} be the i-th variable

and X−i ∈ {−1, 1}n−1 be the [n]\{i} variables. Let X i,+ ∈ {−1, 1}n (respec-

tively X i,−) be the vector obtained from X by setting Xi = 1 (respectively

Xi = −1). Then we have

ε ≥ E
X∼D

[(σ(〈w,X〉+ θ′)− σ(〈u,X〉+ θ′′))2]

= E
X−i

[
E

Xi|X−i

(σ(〈w,X〉+ θ′)− σ(〈u,X〉+ θ′′))2

]
= E

X−i

[(σ(
〈
w,X i,+

〉
+ θ′)− σ(

〈
u,X i,+

〉
+ θ′′))2 · P[Xi = 1|X−i]

+ (σ(
〈
w,X i,−〉+ θ′)− σ(

〈
u,X i,−〉+ θ′′))2 · P[Xi = −1|X−i]]

(a)

≥ δ · E
X−i

[(σ(
〈
w,X i,+

〉
+ θ′)− σ(

〈
u,X i,+

〉
+ θ′′))2

+ (σ(
〈
w,X i,−〉+ θ′)− σ(

〈
u,X i,−〉+ θ′′))2]

(b)

≥ δe−2‖w‖1−2|θ′|−6 · E
X−i

[min(1, ((
〈
w,X i,+

〉
+ θ′)− (

〈
u,X i,+

〉
+ θ′′))2)

+ min(1, ((
〈
w,X i,−〉+ θ′)− (

〈
u,X i,−〉+ θ′′))2)]

(c)

≥ δe−2‖w‖1−2|θ′|−6 · E
X−i

min(1, (2wi − 2ui)
2/2)

(d)
= δe−2‖w‖1−2|θ′|−6 ·min(1, 2(wi − ui)2). (B.16)

Here (a) follows from the fact that D is a δ-unbiased distribution, which implies

that P[Xi = 1|X−i] ≥ δ and P[Xi = −1|X−i] ≥ δ. Inequality (b) is obtained

by substituting (B.15). Inequality (c) uses the following fact

min(1, a2) + min(1, b2) ≥ min(1, (a− b)2/2), ∀a, b ∈ R. (B.17)

To see why (B.17) holds, note that if both |a|, |b| ≤ 1, then (B.17) is true since

a2 + b2 ≥ (a − b)2/2. Otherwise, (B.17) is true because the left-hand side is

146



at least 1 while the right-hand side is at most 1. The last equality (d) follows

from that X−i is independent of min(1, 2(wi − ui)2).

Since ε < δe−2‖w‖1−2|θ′|−6, (B.16) implies that |wi−ui| ≤ O(1) ·e‖w‖1+|θ′| ·√
ε/δ. Because (B.16) holds for any i ∈ [n], we have that ‖w − u‖∞ ≤

O(1) · e‖w‖1+|θ′| ·
√
ε/δ.

We now prove Lemma 3.3.6 (which is restated below).

Lemma. Let D be a δ-unbiased distribution on [k]n. For X ∼ D, let X̃ ∈

{0, 1}n×k be the one-hot encoded X. Let u,w ∈ Rn×k be two matrices satisfying∑
j u(i, j) = 0 and

∑
j w(i, j) = 0 for i ∈ [n]. Suppose that for some u,w

and θ′, θ′′ ∈ R, we have EX∼D[(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2] ≤ ε, where

ε < δe−2‖w‖∞,1−2|θ′|−6. Then ‖w − u‖∞ ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

Proof. Fix an i ∈ [n] and a 6= b ∈ [k]. Let X i,a ∈ [k]n (respectively X i,b) be

the vector obtained from X by setting Xi = a (respectively Xi = b). Let
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X̃ i,a ∈ {0, 1}n×k be the one-hot encoding of X i,a ∈ [k]n. Then we have

ε ≥ E
X∼D

[(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2]

= E
X−i

[
E

Xi|X−i

(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2

]
≥ E

X−i

[(σ(
〈
w, X̃ i,a

〉
+ θ′)− σ(

〈
u, X̃ i,a

〉
+ θ′′))2 · P[Xi = a|X−i]

+ (σ(
〈
w, X̃ i,b

〉
+ θ′)− σ(

〈
u, X̃ i,b

〉
+ θ′′))2 · P[Xi = b|X−i]]

(a)

≥ δe−2‖w‖∞,1−2|θ′|−6 · E
X−i

[min(1, ((
〈
w, X̃ i,a

〉
+ θ′)− (

〈
u, X̃ i,a

〉
+ θ′′))2)

+ min(1, ((
〈
w, X̃ i,b

〉
+ θ′)− (

〈
u, X̃ i,b

〉
+ θ′′))2)]

(b)

≥ δe−2‖w‖∞,1−2|θ′|−6 · E
X−i

min(1, ((w(i, a)− w(i, b))− (u(i, a)− u(i, b)))2/2)

= δe−2‖w‖∞,1−2|θ′|−6 min(1, ((w(i, a)− w(i, b))− (u(i, a)− u(i, b)))2/2)
(B.18)

Here (a) follows from that D is a δ-unbiased distribution and (B.15). Inequality

(b) follows from (B.17). Because ε < δe−2‖w‖∞,1−2|θ′|−6, (B.18) implies that

(w(i, a)− w(i, b))− (u(i, a)− u(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ. (B.19)

(u(i, a)− u(i, b))− (w(i, a)− w(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ. (B.20)

Since (B.19) and (B.20) hold for any a 6= b ∈ [k], we can sum over b ∈ [k] and

use the fact that
∑

j u(i, j) = 0 and
∑

j w(i, j) = 0 to get

w(i, a)− u(i, a) =
1

k

∑
b

(w(i, a)− w(i, b))− (u(i, a)− u(i, b))

≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

u(i, a)− w(i, a) =
1

k

∑
b

(u(i, a)− u(i, b))− (w(i, a)− w(i, b))

≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.
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Therefore, we have |w(i, a)− u(i, a)| ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ, for any i ∈ [n]

and a ∈ [k].

B.6 Proof of Theorem 3.2.1

We first restate Theorem 3.2.1 and then give the proof.

Theorem. Let D(A, θ) be an unknown n-variable Ising model distribution

with dependency graph G. Suppose that the D(A, θ) has width λ(A, θ) ≤ λ.

Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. samples satisfies N =

O(λ2 exp(12λ) ln(n/ρ)/ε4), then with probability at least 1 − ρ, Algorithm 5

produces Â that satisfies

max
i,j∈[n]

|Aij − Âij| ≤ ε. (B.21)

Proof. For ease of notation, we consider the n-th variable. The goal is to

prove that Algorithm 5 is able to recover the n-th row of the true weight

matrix A. Specifically, we will show that if the number samples satisfies

N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability as least 1− ρ/n,

max
j∈[n]
|Anj − Ânj| ≤ ε. (B.22)

We then use a union bound to conclude that with probability as least 1− ρ,

maxi,j∈[n] |Aij − Âij| ≤ ε.

Let Z ∼ D(A, θ), X = [Z−n, 1] = [Z1, Z2, · · · , Zn−1, 1] ∈ {−1, 1}n,

and Y = Zn ∈ {−1, 1}. By Fact 2, P[Y = 1|X = x] = σ(〈w∗, x〉), where
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w∗ = 2[An1, · · · , An(n−1), θn]. Further, ‖w∗‖1 ≤ 2λ. Let ŵ be the solution of

the `1-constrained logistic regression problem defined in (3.4).

By Lemma 3.3.1, if the number of samples satisfiesN = O(λ2 ln(n/ρ)/γ2),

then with probability at least 1− ρ/n, we have

E
X

[(σ(〈w∗, X〉)− σ(〈ŵ,X〉))2] ≤ γ. (B.23)

By Lemma 3.3.4, Z−n ∈ {−1, 1}n−1 is δ-unbiased (Definition 3.3.1) with

δ = e−2λ/2. By Lemma 3.3.5, if γ < C1δe
−4λ for some constant C1 > 0, then

(B.23) implies that

‖w∗1:(n−1) − ŵ1:(n−1)‖∞ ≤ O(1) · e2λ ·
√
γ/δ. (B.24)

Note that w∗1:(n−1) = 2[An1, · · · , An(n−1)] and ŵ1:(n−1) = 2[Ân1, · · · , Ân(n−1)].

Let γ = C2δe
−4λε2 for some constant C2 > 0 and ε ∈ (0, 1), (B.24) then implies

that

max
j∈[n]
|Anj − Ânj| ≤ ε. (B.25)

The number of samples needed isN = O(λ2 ln(n/ρ)/γ2) = O(λ2e12λ ln(n/ρ)/ε4).

We have proved that (B.22) holds with probability at least 1 − ρ/n.

Using a union bound over all n variables gives that with probability as least

1− ρ, maxi,j∈[n] |Aij − Âij| ≤ ε.

B.7 Proof of Theorem 3.2.3

The following lemma will be used in the proof.

150



Lemma B.7.1. Let Z ∼ D, where D is a δ-unbiased distribution on [k]n. Given

α 6= β ∈ [k], conditioned on Zn ∈ {α, β}, Z−n ∈ [k]n−1 is also δ-unbiased.

Proof. For any i ∈ [n− 1], a ∈ [k], and x ∈ [k]n−2, we have

P[Zi = a|Z[n]\{i,n} = x, Zn ∈ {α, β}]

=
P[Zi = a, Z[n]\{i,n} = x, Zn = α] + P[Zi = a, Z[n]\{i,n} = x, Zn = β]

P[Z[n]\{i,n} = x, Zn = α] + P[Z[n]\{i,n} = x, Zn = β]

(a)

≥ min(
P[Zi = a, Z[n]\{i,n} = x, Zn = α]

P[Z[n]\{i,n} = x, Zn = α]
,
P[Zi = a, Z[n]\{i,n} = x, Zn = β]

P[Z[n]\{i,n} = x, Zn = β]
)

= min(P[Zi = a|Z[n]\{i,n} = x, Zn = α],P[Zi = a|Z[n]\{i,n} = x, Zn = β])

(b)

≥ δ. (B.26)

where (a) follows from the fact that (a+b)/(c+d) ≥ min(a/c, b/d) for a, b, c, d >

0, (b) follows from the fact that Z is δ-unbiased.

Now we are ready to prove Theorem 3.2.3, which is restated below.

Theorem. Let D(W,Θ) be an n-variable pairwise graphical model distribution

with width λ(W,Θ) ≤ λ and alphabet size k. Given ρ ∈ (0, 1) and ε > 0, if

the number of i.i.d. samples satisfies N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then

with probability at least 1− ρ, Algorithm 6 produces Ŵij ∈ Rk×k that satisfies

|Wij(a, b)− Ŵij(a, b)| ≤ ε, ∀i 6= j ∈ [n], ∀a, b ∈ [k]. (B.27)

Proof. To ease notation, let us consider the n-th variable (i.e., set i = n

inside the first “for” loop of Algorithm 6). The proof directly applies to

other variables. We will prove the following result: if the number of samples
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N = O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then with probability at least 1− ρ/n, the

Uα,β ∈ Rn×k matrices produced by Algorithm 6 satisfies

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, β, b ∈ [k]. (B.28)

Suppose that (B.28) holds, summing over β ∈ [k] and using the fact that∑
βWnj(β, b) = 0 gives

|Wnj(α, b)−
1

k

∑
β∈[k]

Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, b ∈ [k]. (B.29)

Theorem 3.2.3 then follows by taking a union bound over the n variables.

The only thing left is to prove (B.28). Now fix a pair of α, β ∈ [k], let

Nα,β be the number of samples such that the n-th variable is either α or β. By

Lemma 3.3.2 and Fact 3, if Nα,β = O(λ2k ln(n/ρ′)/γ2), then with probability at

least 1−ρ′, the minimizer of the `2,1 constrained logistic regression wα,β ∈ Rn×k

satisfies

E
X

[(σ(〈w∗, X〉)− σ(
〈
wα,β, X

〉
))2] ≤ γ. (B.30)

Recall that X ∈ {0, 1}n×k is the one-hot encoding of the vector [Z−n, 1] ∈ [k]n,

where Z ∼ D(W,Θ) and Zn ∈ {α, β}. Besides, w∗ ∈ Rn×k satisfies

w∗(j, :) = Wnj(α, :)−Wnj(β, :), ∀j ∈ [n− 1];

w∗(n, :) = [θn(α)− θn(β), 0, · · · , 0].

Let Uα,β ∈ Rn×k be formed by centering the first n − 1 rows of wα,β. Since

each row of X is a standard basis vector (i.e., all 0’s except a single 1),〈
Uα,β, X

〉
=
〈
wα,β, X

〉
. Hence, (B.30) implies

E
X

[(σ(〈w∗, X〉)− σ(
〈
Uα,β, X

〉
))2] ≤ γ. (B.31)
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By Lemma 3.3.4, we know that Z ∼ D(W,Θ) is δ-unbiased with

δ = e−2λ/k. By Lemma B.7.1, conditioned on Zn ∈ {α, β}, Z−n is also δ-

unbiased. Hence, the condition of Lemma 3.3.6 holds. Applying Lemma 3.3.6

to (B.31), we get that if Nα,β = O(λ2k3 exp(12λ) ln(n/ρ′))/ε4), the following

holds with probability at least 1− ρ′:

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀b ∈ [k]. (B.32)

So far we have proved that (B.28) holds for a fixed (α, β) pair. This

requires that Nα,β = O(λ2k3 exp(12λ) ln(n/ρ′))/ε4). Recall that Nα,β is the

number of samples that the n-th variable takes α or β. We next derive the

number of total samples needed in order to have Nα,β samples for a given (α, β)

pair. Since D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k, for Z ∼ D(W,Θ), we

have P[Zn ∈ {α, β}|Z−n] ≥ 2δ, and hence P[Zn ∈ {α, β}] ≥ 2δ. By the Chernoff

bound, if the total number of samples satisfies N = O(Nα,β/δ + log(1/ρ′′)/δ),

then with probability at least 1− ρ′′, we have Nα,β samples for a given (α, β)

pair.

To ensure that (B.32) holds for all (α, β) pairs with probability at

least 1 − ρ/n, we can set ρ′ = ρ/(nk2) and ρ′′ = ρ/(nk2) and take a union

bound over all (α, β) pairs. The total number of samples required is N =

O(λ2k4 exp(14λ) ln(nk/ρ)/ε4).

We have shown that (B.28) holds for the n-th variable with probability

at least 1−ρ/n. By the discussion at the beginning of the proof, Theorem 3.2.3

then follows by a union bound over the n variables.
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B.8 Mirror Descent Algorithms for Constrained Logis-
tic Regression

Algorithm 8 gives a mirror descent algorithm for the following `1-

constrained logistic regression:

min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ W1. (B.33)

We use the doubling trick to expand the dimension and re-scale the samples

(Step 2 in Algorithm 8). Now the original problem becomes a logistic regression

problem over a probability simplex: ∆2n+1 = {w ∈ R2n+1 :
∑2n+1

i=1 wi = 1, wi ≥

0,∀i ∈ [2n+ 1]}.

min
w∈∆2n+1

1

N

N∑
i=1

−ŷi ln(σ(
〈
w, x̂i

〉
))− (1− ŷi) ln(1− σ(

〈
w, x̂i

〉
)), (B.34)

where (x̂i, ŷi) ∈ R2n+1 × {0, 1}. In Step 4-11 of Algorithm 8, we follow the

standard simplex setup for mirror descent algorithm (see Section 5.3.3.2 of (Ben-

Tal and Nemirovski, 2013)). Specifically, the negative entropy is used as the

distance generating function (aka the mirror map). The projection step (Step 9)

can be done by a simple `1 normalization operation. After that, we transform

the solution back to the original space (Step 12).

Algorithm 9 gives a mirror descent algorithm for the `2,1-constrained

logistic regression:

min
w∈Rn×k

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤ W2,1. (B.35)
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Algorithm 8: Mirror descent algorithm for `1-constrained logistic
regression

Input: {(xi, yi)}Ni=1 where xi ∈ {−1, 1}n, yi ∈ {−1, 1}; constraint
on the `1 norm W1 ∈ R+; number of iterations T .

Output: w̄ ∈ Rn.
1 for sample i← 1 to N do

// Form samples (x̂i, ŷi) ∈ R2n+1 × {0, 1}.
2 x̂i ← [xi,−xi, 0] ·W1, ŷi ← (yi + 1)/2

3 end
// Initialize w as the uniform distribution.

4 w1 ← [ 1
2n+1

, 1
2n+1

, · · · , 1
2n+1

] ∈ R2n+1

5 γ ← 1
2W1

√
2 ln(2n+1)

T
// Set the step size.

6 for iteration t← 1 to T do

7 gt ← 1
N

∑N
i=1(σ(〈wt, x̂i〉)− ŷi)x̂i // Compute the gradient.

// Coordinate-wise update.

8 wt+1
i ← wti exp(−γgti), for i ∈ [2n+ 1]

9 wt+1 ← wt+1/‖wt+1‖1 // Projection step.

10 end

11 w̄ ←
∑T

t=1w
t/T // Aggregate the updates.

// Transform w̄ back to Rn and the actual scale.

12 w̄ ← (w̄1:n − w̄(n+1):2n) ·W1
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For simplicity, we assume that n ≥ 33. We then follow Section 5.3.3.3 of (Ben-

Tal and Nemirovski, 2013) to use the following function as the mirror map

Φ : Rn×k → R:

Φ(w) =
e ln(n)

p
‖w‖p2,p, p = 1 + 1/ ln(n). (B.36)

The update step (Step 8) can be computed efficiently in O(nk) time, see the

discussion in Section 5.3.3.3 of (Ben-Tal and Nemirovski, 2013) for more details.

Algorithm 9: Mirror descent algorithm for `2,1-constrained logistic
regression

Input: {(xi, yi)}Ni=1 where xi ∈ {0, 1}n×k, yi ∈ {−1, 1}; constraint
on the `2,1 norm W2,1 ∈ R+; number of iterations T .

Output: w̄ ∈ Rn×k.
1 for sample i← 1 to N do

// Form samples (x̂i, ŷi) ∈ Rn×k × {0, 1}.
2 x̂i ← xi ·W2,1, ŷi ← (yi + 1)/2

3 end
// Initialize w as a constant matrix.

4 w1 ← [ 1
n
√
k
, 1
n
√
k
, · · · , 1

n
√
k
] ∈ Rn×k

5 γ ← 1
2W2,1

√
e ln(n)
T

// Set the step size.

6 for iteration t← 1 to T do

7 gt ← 1
N

∑N
i=1(σ(〈wt, x̂i〉)− ŷi)x̂i // Compute the gradient.

// Φ(w) is given in (B.36).

8 wt+1 ← arg min‖w‖2,1≤1 Φ(w)− 〈∇Φ(wt)− γgt, w〉
9 end

10 w̄ ← (
∑T

t=1w
t/T ) ·W21 // Aggregate the updates.

3For n ≤ 2, we need to switch to a different mirror map, see Section 5.3.3.3 of (Ben-Tal
and Nemirovski, 2013) for more details.
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B.9 Proof of Theorem 3.2.5 and Theorem 3.2.6

Lemma B.9.1. Let L̂(w) = 1
N

∑N
i=1 ln(1+e−y

i〈w,xi〉) be the empirical loss. Let

ŵ be a minimizer of the ERM defined in (B.33). The output w̄ of Algorithm 8

satisfies

L̂(w̄)− L̂(ŵ) ≤ 2W1

√
2 ln(2n+ 1)

T
. (B.37)

Similarly, let ŵ be a minimizer of the ERM defined in (B.35). Then the output

w̄ of Algorithm 9 satisfies

L̂(w̄)− L̂(ŵ) ≤ O(1) ·W2,1

√
ln(n)

T
. (B.38)

Lemma B.9.1 follows from the standard convergence result for mirror

descent algorithm (see, e.g., Theorem 4.2 of (Bubeck, 2015)), and the fact

that the gradient gt in Step 6 of Algorithm 8 satisfies ‖gt‖∞ ≤ 2W1 (reps. the

gradient gt in Step 6 of Algorithm 9 satisfies ‖gt‖∞ ≤ 2W2,1). This implies

that the objective function after rescaling the samples is 2W1-Lipschitz w.r.t.

‖·‖1 (reps. 2W2,1-Lipschitz w.r.t. ‖·‖2,1).

We are now ready to prove Theorem 3.2.5, which is restated below.

Theorem. In the setup of Theorem 3.2.1, suppose that the `1-constrained

logistic regression in Algorithm 5 is optimized by the mirror descent method

(Algorithm 8) given in Appendix B.8. Given ρ ∈ (0, 1) and ε > 0, if the

number of mirror descent iterations satisfies T = O(λ2 exp(12λ) ln(n)/ε4, and

the number of i.i.d. samples satisfies N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then
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(3.6) still holds with probability at least 1−ρ. The total run-time of Algorithm 5

is O(TNn2).

Proof. We first note that in the proof of Theorem 3.2.1, we only use ŵ in order

to apply the result from Lemma 3.3.1. In the proof of Lemma 3.3.1 (given in

Appendix B.2), there is only one place where we use the definition of ŵ: the

inequality (b) in (B.10). As a result, if we can show that (B.10) still holds after

replacing ŵ by w̄, i.e.,

L(w̄) ≤ L(w∗) +O(γ), (B.39)

then Lemma 3.3.1 would still hold, and so is Theorem 3.2.1.

By Lemma B.9.1, if the number of iterations T = O(W 2
1 ln(n)/γ2), then

L̂(w̄)− L̂(ŵ) ≤ γ. (B.40)

As a result, we have

L(w̄)
(a)

≤ L̂(w̄) + γ
(b)

≤ L̂(ŵ) + 2γ
(c)

≤ L̂(w∗) + 2γ
(d)

≤ L(w∗) + 3γ, (B.41)

where (a) follows from (B.8), (b) follows from (B.40), (c) follows from the fact

that ŵ is the minimizer of L̂(w), and (d) follows from (B.9). The number of

mirror descent iterations needed for (B.39) to hold is T = O(W 2
1 ln(n)/γ2).

In the proof of Theorem 3.2.1, we need to set γ = O(1)ε2 exp(−6λ) (see the

proof following (B.24)), so the number of mirror descent iterations needed is

T = O(λ2 exp(12λ) ln(n)/ε4).
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To analyze the runtime of Algorithm 5, note that for each variable in [n],

transforming the samples takes O(N) time, solving the `1-constrained logisitic

regression via Algorithm 8 takes O(TNn) time, and updating the edge weight

estimate takes O(n) time. Forming the graph Ĝ over n nodes takes O(n2) time.

The total runtime is O(TNn2).

The proof of Theorem 3.2.6 is identical to that of Theorem 3.2.5 and

is omitted here. The key step is to show that (B.39) holds after replacing ŵ

by w̄. This can be done by using the convergence result in Lemma B.9.1 and

applying the same logic in (B.41). The runtime of Algorithm 6 can be analyzed

in the same way as above. The `2,1-constrained logistic regression dominates

the total runtime. It requires O(TNα,βnk) time for each pair (α, β) and each

variable in [n], where Nα,β is the subset of samples that a given variable takes

either α or β. Since N ≥ kNα,β, the total runtime is O(TNn2k2).

B.10 More Experimental Results

We compare our algorithm (Algorithm 6) with the Sparsitron algorithm

in (Klivans and Meka, 2017) on a two-dimensional 3-by-3 grid (shown in

Figure 3.2). We experiment three alphabet sizes: k = 2, 4, 6. For each value

of k, we simulate both algorithms 100 runs, and in each run we generate the

Wij matrices with entries ±0.2. To ensure that each row (as well as each

column) of Wij is centered (i.e., zero mean), we will randomly choose Wij

between two options: as an example of k = 2, Wij = [0.2,−0.2;−0.2, 0.2] or
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Wij = [−0.2, 0.2; 0.2,−0.2]. The external field is zero. Sampling is done via

exactly computing the distribution. The Sparsitron algorithm requires two

sets of samples: 1) to learn a set of candidate weights; 2) to select the best

candidate. We use max{200, 0.01 ·N} samples for the second part. We plot the

estimation error maxij‖Wij − Ŵij‖∞ and the fraction of successful runs (i.e.,

runs that exactly recover the graph) in Figure B.1. Compared to the Sparsitron

algorithm, our algorithm requires fewer samples for successfully recovery.
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Figure B.1: Comparison of our algorithm and the Sparsitron algorithm in (Kli-
vans and Meka, 2017) on a two-dimensional 3-by-3 grid. Top row shows the
average of the estimation error maxij‖Wij − Ŵij‖∞. Bottom row plots the
faction of successful runs (i.e., runs that exactly recover the graph). Each
column corresponds to an alphabet size: k = 2, 4, 6. Our algorithm needs fewer
samples than the Sparsitron algorithm for graph recovery.
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Appendix C

Appendix for Chapter 4

C.1 Proof of Lemma 4.3.1

For convenience, we re-state Lemma 4.3.1 here and then give the proof.

Lemma. For any vector x ∈ Rd, and any matrix A ∈ Rm×d (m < d) with rank

m, there exists an Ã ∈ Rm×d with all singular values being ones, such that the

following two `1-norm minimization problems have the same solution:

P1 : min
x′∈Rd
‖x′‖1 s.t. Ax′ = Ax. (C.1)

P2 : min
x′∈Rd
‖x′‖1 s.t. Ãx′ = Ãx. (C.2)

Furthermore, the projected subgradient update of P2 is given as

x(t+1) = x(t) − αt(I − ÃT Ã)sign(x(t)), x(1) = ÃT Ãx.

A natural choice for Ã is U(AAT )−1/2A, where U ∈ Rm×m can be any unitary

matrix.

Proof. To prove that P1 and P2 give the same solution, it suffices to show that

their constraint sets are equal, i.e.,

{x : Ax = Az} = {x : Ãx = Ãz}. (C.3)
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Since {x : Ax = Az} = {z + v : v ∈ null(A)} and {x : Ãx = Ãz} = {z + v :

v ∈ null(Ã)}, it then suffices to show that A and Ã have the same nullspace:

null(A) = null(Ã). (C.4)

If v satisfies Av = 0, then U(AAT )−1/2Av = 0, which implies Ãv = 0. Con-

versely, we suppose that Ãv = 0. Since U is unitary, AAT ∈ Rm×m is full-rank,

(AAT )(1/2)UT Ãv = 0, which implies that Av = 0. Therefore, (C.4) holds.

The projected subgradient of P2 has the following update

x(t+1) = x(t) − αt(I − ÃT (ÃÃT )−1Ã)sign(x(t)), (C.5)

x(1) = ÃT (ÃÃT )−1Ãz (C.6)

Since Ã = U(AAT )−1/2A, we have

ÃÃT = U(AAT )−1/2AAT (AAT )−1/2UT

= U(AAT )−1/2(AAT )1/2(AAT )1/2(AAT )−1/2UT

= I. (C.7)

Substituting (C.7) into (C.6) gives the desired recursion:

x(t+1) = x(t) − αt(I − ÃT Ã)sign(x(t)), x(1) = ÃT Ãz.

C.2 Training Parameters

Table C.1 lists the parameters used to train `1-AE in our experiments.

We explain the parameters as follows.
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Dataset Depth
Batch Learning

Nmax Nvalidation Nno improvesize rate
Toy 10 128 0.01 2e4 10 5

Synthetic1 10 128 0.01 2e4 10 5
Synthetic2 5 128 0.01 2e4 10 1
Synthetic3 5 128 0.01 2e4 10 1
Amazon 60 256 0.01 2e4 1 1

Wiki10-31K 10 256 0.001 5e3 10 1
RCV1 10 256 0.001 1e3 1 50

Table C.1: Hyper-parameters used to train our autoencoder.

• Depth: The number of blocks in the decoder, indicated by T in Figure 4.1.

• Batch size: The number of training samples in a batch.

• Learning rate: The learning rate for SGD.

• Nmax: Maximum number of training epochs.

• Nvalidation: Validation error is computed every Nvalidation epochs. This is

used for early-stopping.

• Nno improve: Training is stopped if the validation error does not improve

for Nno improve ∗Nvalidation epochs.

C.3 Model-based CoSaMP with Additional Positivity
Constraint

The CoSaMP algorithm (Needell and Tropp, 2009) is a simple iterative

and greedy algorithm used to recover a K-sparse vector from the linear mea-

surements. The model-based CoSaMP algorithm (Algorithm 1 of (Baraniuk
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et al., 2010)) is a modification of the CoSaMP algorithm. It uses the prior

knowledge about the support of the K-sparse vector, which is assumed to

follow a predefined structured sparsity model. In this section we slightly modify

the model-based CoSaMP algorithm to ensure that the output vector follows

the given sparsity model and is also nonnegative.

To present the pseudocode, we need a few definitions. We begin with

a formal definition for the structured sparsity model MK and the sparse

approximation algorithm M. For a vector x ∈ Rd, let x|Ω ∈ R|Ω| be entries of

x in the index set Ω ∈ [d]. Let ΩC = [d]− Ω be the complement of set Ω.

Definition C.3.1 ((Baraniuk et al., 2010)). A structured sparsity model MK

is defined as the union of mK canonical K-dimensional subspaces

MK =

mK⋃
m=1

Xm s.t. Xm = {x : x|Ωm ∈ RK , x|ΩC
m

= 0}, (C.8)

where {Ω1, ...,ΩmK
} is the set containing all allowed supports, with |Ωm| = K

for each m = 1, ...,mK , and each subspace Xm contains all signals x with

supp(x) ⊂ Ωm.

We define M(x,K) as the algorithm that obtains the best K-term

structured sparse approximation of x in the union of subspaces MK :

M(x,K) = arg min
x̄∈MK

‖x− x̄‖2. (C.9)

We next define an enlarged set of subspaces MB
K and the associated

sparse approximation algorithm.
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Definition C.3.2 ((Baraniuk et al., 2010)). The B-order sum for the set MK ,

with B > 1 an integer, is defined as

MB
K =

{
B∑
r=1

x(r), with x(r) ∈MK

}
. (C.10)

We define MB(x,K) as the algorithm that obtains the best approxima-

tion of x in the union of subspaces MB
K :

MB(x,K) = arg min
x̄∈MB

K

‖x− x̄‖2. (C.11)

Algorithm 10 presents the model-based CoSaMP with positivity con-

straint. Comparing Algorithm 10 with the original model-based CoSaMP

algorithm (Algorithm 1 of (Baraniuk et al., 2010)), we note that the only

different is that Algorithm 10 has an extra step (Step 6). In Step 6 we take a

ReLU operation on b to ensure that x̂i is always nonnegative after Step 7.

We now show that Algorithm 10 has the same performance guarantee

as the original model-based CoSaMP algorithm for structured sparse signals.

Speficially, we will show that Theorem 4 of (Baraniuk et al., 2010) also applies

to Algorithm 10. In (Baraniuk et al., 2010), the proof of Theorem 4 is based

on six lemmas (Appendix D), among which the only lemma that is related to

Step 6-7 is Lemma 6. It then suffices to prove that this lemma is also true for

Algorithm 10 under the constraint that the true vector x is nonnegative.

Lemma (Prunning). The pruned approximation x̂i = M(b̂, K) is such that

‖x− x̂i‖2 ≤ 2‖x− b‖2. (C.12)
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Algorithm 10: Model-based CoSaMP with positivity constraint

Input: measurement matrix A, measurements y, structured sparse
approximation algorithm M.

Output: K-sparse approximation x̂ to the true signal x, which is
assumed to be nonnegative.

1 x̂0 = 0 , r = y; i = 0. // Initialization

2 while halting criterion false do
3 i← i+ 1
4 e← AT r // Form signal residual estimate

// Prune residual estimate according to structure

5 Ω← supp(M2(e,K))
6 T ← Ω ∪ supp(x̂i−1) // Merge support

// Form signal estimate by least-squares

7 b|T ← A†Ty, b|TC ← 0

8 b̂ = max{0, b} // Set the negative entries to be zero

// Prune signal estimate according to structure

9 x̂i ←M(b̂, K)
10 r ← y − Ax̂i // Update measurement residual

11 end
12 x̂← x̂i // Return the result
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Proof. Since x̂i is the K-best approximation of b̂ in MK , and x ∈MK , we have

‖x− x̂i‖2 ≤ ‖x− b̂‖2 + ‖b̂− x̂i‖2 ≤ 2‖x− b̂‖2 ≤ 2‖x− b‖2, (C.13)

where the last inequality follows from that b̂ = max{0, b}, and x ≥ 0.

The above lemma matches Lemma 6, which is used to prove Theorem

4 in (Baraniuk et al., 2010). Since the other lemmas (i.e., Lemma 1-5 in

Appendix D of (Baraniuk et al., 2010)) still hold for Algorithm 10, we conclude

that the performance guarantee for structured sparse signals (i.e., Theorem 4

of (Baraniuk et al., 2010)) is also true for Algorithm 10.

In Figure C.1, we compare the recovery performance of two decoding

algorithms: 1) model-based CoSaMP algorithm (Algorithm 1 of (Baraniuk

et al., 2010)) and 2) model-based CoSaMP algorithm with positivity constraint

(indicated by “Model-based CoSaMP pos” in Figure C.1). We use random

Gaussian matrices as the measurement matrices. Since our sparse datasets are

all nonnegative, adding the positivity constraint to the decoding algorithm is

able to improve the recovery performance.

C.4 Additional Experimental Results

C.4.1 A toy experiment

We use a simple example to illustrate that the measurement matrix

learned from our autoencoder is adapted to the training samples. The toy

dataset is generated as follows: each vector x ∈ R100 has 5 nonzeros randomly
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Figure C.1: Incorporating the positivity constraint to the model-based CoSaMP
algorithm improves its recovery performance.

located in the first 20 dimensions; the nonzeros are random values between

[0,1]. We train `1-AE on a training set with 6000 samples. The parameters are

T = 10, m = 10, and learning rate 0.01. A validation set with 2000 samples

is used for early-stopping.After training, we plot the matrix A in Figure C.2.

The entries with large values are concentrated in the first 20 dimensions. This

agrees with the specific structure in the toy dataset.

168



10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

0 20 40 60 80 100

Dimension

0.2

0.4

0.6

C
o
lu

m
n
 n

o
rm

Figure C.2: Visualization of the learned matrix A ∈ R10×100 on the toy dataset:
a color map of the matrix (upper), the column-wise `2 norm (lower). Every
sample in the toy dataset has 5 nonzeros, located randomly in the first 20
dimensions.

C.4.2 Random Partial Fourier Matrices

Figure C.3 is a counterpart of Figure 4.2 and Figure 4.3. The only

difference is that in Figure C.3 we use random partial Fourier matrices in place

of random Gaussian matrices. A random M × N partial Fourier matrix is

obtained by choosing M rows uniformly and independently with replacement

from the N ×N discrete Fourier transform (DFT) matrix. We then scale each

entry to have absolute value 1/
√
M (Haviv and Regev, 2017). Because the

DFT matrix is complex, to obtain m real measurements, we draw m/2 random

rows from a DFT matrix to form the partial Fourier matrix.

A random partial Fourier matrix is a Vandermonde matrix. According

to (Donoho and Tanner, 2005), one can exactly recover a k-sparse nonnegative

vector from 2k measurements using a Vandermonde matrix (Donoho and
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Tanner, 2005). However, the Vandermonde matrices are numerically unstable

in practice (Pan, 2016), which is consistent with our empirical observation.

Comparing Figure C.3 with Figure 4.2 and Figure 4.3, we see that the recovery

performance of a random partial Fourier matrix has larger variance than that

of a random Gaussian matrix.
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Figure C.3: Recovery performance of random partial Fourier matrices. Best
viewed in color. Similar to Figure 4.2 and Figure 4.3, the error bars represent
the standard deviation across 10 randomly generated datasets. We see that
the recovery performance of a random partial Fourier matrix (shown in this
figure) has a larger variance than that of a random Gaussian matrix (shown in
Figure 4.2 and Figure 4.3).
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C.4.3 `1-minimization with Positivity Constraint

We compare the recovery performance between solving an `1-min (4.5)

and an `1-min with positivity constraint (4.16). The results are shown in

Figure C.4. We experiment with two measurement matrices: 1) the one

obtained from training our autoencoder, and 2) random Gaussian matrices.

As shown in Figure C.4, adding a positivity constraint to the `1-minimization

improves the recovery performance for nonnegative input vectors.

C.4.4 Singular Values of the Learned Measurement Matrices

We have shown that the measurement matrix obtained from training our

autoencoder is able to capture the sparsity structure of the training data. We

are now interested in looking at those data-dependent measurement matrices

more closely. Table C.2 shows that those matrices have singular values close

to one. Recall that in Section 4.3.1 we show that matrices with all singular

values being ones have a simple form for the projected subgradient update

(4.13). Our decoder is designed based on this simple update rule. Although we

do not explicitly enforce this constraint during training, Table C.2 indicates

that the learned matrices are not far from the constraint set.

C.4.5 Additional Experiments of LBCS

We experimented with four variations of LBCS: two different basis

matrices (random Gaussian matrix and DCT matrix), two different decoders

(`1-minimization and linear decoder). As shown in Figure C.5, the combination
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Figure C.4: A comparison of the recovery performance between `1-min (4.5) and
the `1-min with positivity constraint (4.16). The sparse recovery performance
is measured on the test set. Best viewed in color. We plot the mean and
standard deviation (indicated by the error bars) across 10 randomly generated
datasets. Adding a positivity constraint to the `1-minimization gives better
recovery performance than a vanilla `1-minimization.
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Dataset σlargest σsmallest

Synthetic1 1.117 ± 0.003 0.789 ± 0.214
Synthetic2 1.113 ± 0.006 0.929 ± 0.259
Synthetic3 1.162 ± 0.014 0.927 ± 0.141
Amazon 1.040 ± 0.021 0.804 ± 0.039

Wiki10-31K 1.097 ± 0.003 0.899 ± 0.044
RCV1 1.063 ± 0.016 0.784 ± 0.034

Table C.2: Range of the singular values of the measurement matrices A ∈ Rm×d

obtained from training `1-AE . The mean and standard deviation is computed
by varying the number of m (i.e., the “number of measurements” in Figure 4.2
and Figure 4.3).

of Gaussian and `1-minimization performs the best.

C.4.6 Precision Score Comparisons for XML

Table C.3 compares the precision scores (P@1, P@3, P@5) over two

benchmark datasets. For SLEEC, the precision scores we obtained by running

their code (and combining 5 models in the ensemble) are consistent with those

reported in the benchmark website (Bhatia et al., 2017). Compared to SLEEC,

our method (which learns label embeddings via training an autoencoder `1-AE

) is able to achieve better or comparable precision scores. For our method, we

have experimented with three prediction approaches (denoted as “`1-AE 1/2/3”

in Table C.3): 1) use the nearest neighbor method (same as SLEEC); 2) use

the decoder of the trained `1-AE (which maps from the embedding space to

label space); 3) use an average of the label vectors obtained from 1) and 2).

As indicated in Table C.3, the third prediction approach performs the best.
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Figure C.5: We compare four variations of the LBCS method proposed in (Bal-
dassarre et al., 2016; Li and Cevher, 2016): two basis matrices (random Gaussian
and DCT matrix); two decoders (`1-minimization and linear decoding). The
combination of “Gaussian + `1-minimization” performs the best. Best viewed
in color. For each method, we plot the mean and standard deviation (indicated
by the error bars) across 10 randomly generated datasets.
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Dataset EURLex-4K Wiki10-31K
# models in the

1 3 5 1 3 5
ensemble
SLEEC 0.7600 0.7900 0.7944 0.8356 0.8603 0.8600
`1-AE 1 0.7655 0.7928 0.7931 0.8529 0.8564 0.8597
`1-AE 2 0.7949 0.8033 0.8070 0.8560 0.8579 0.8583
`1-AE 3 0.8062 0.8151 0.8136 0.8617 0.8640 0.8630

Dataset EURLex-4K Wiki10-31K
# models in the

1 3 5 1 3 5
ensemble
SLEEC 0.6116 0.6403 0.6444 0.7046 0.7304 0.7357
`1-AE 1 0.6094 0.6347 0.6360 0.7230 0.7298 0.7323
`1-AE 2 0.6284 0.6489 0.6575 0.7262 0.7293 0.7296
`1-AE 3 0.6500 0.6671 0.6693 0.7361 0.7367 0.7373

Dataset EURLex-4K Wiki10-31K
# models in the

1 3 5 1 3 5
ensemble
SLEEC 0.4965 0.5214 0.5275 0.5979 0.6286 0.6311
`1-AE 1 0.4966 0.5154 0.5209 0.6135 0.6198 0.6230
`1-AE 2 0.5053 0.5315 0.5421 0.6175 0.6245 0.6268
`1-AE 3 0.5353 0.5515 0.5549 0.6290 0.6322 0.6341

Table C.3: Comparison of the precision scores: P@1, P@3, P@5.
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Appendix D

Appendix for Chapter 5

D.1 Weighted Alternating Minimization

Algorithm 11 provides the pseudocode of the weighted alternating

minimization algorithm (WAltMin). Alternating minimization is a standard

procedure for matrix completion (Jain et al., 2013). WAltMin is a weighted

version of this procedure. The weights (i.e., the w’s defined in Step 2 of

Algorithm 11) are used to compensate the sampling bias. Here we follow the

notations in Subroutine 2 of (Bhojanapalli et al., 2015) to illustrate WAltMin.

Recall that we use PΩ(A) to denote a matrix with entries sampled

from the set Ω: PΩ(A)(i, j) = A(i, j) if (i, j) ∈ Ω, and PΩ(A)(i, j) = 0

otherwise. We now define RΩ(A) = w
⊙

PΩ(A) as the Hadamard product

(i.e., element-wise multiplication) between the weight matrix w and PΩ(A):

RΩ(A)(i, j) = w(i, j) · PΩ(A)(i, j) for all (i, j). Similarly we define the matrix

R
1/2
Ω (A) as R

1/2
Ω (A)(i, j) =

√
w(i, j) · PΩ(A)(i, j) for (i, j) ∈ Ω and 0 otherwise.

The weight matrix is defined in Step 2 of Algorithm 11.

In Step 4, we use the sample-splitting technique (Jain et al., 2013) to

obtain 2T + 1 random partitions of Ω (every sample belongs to any one of the

partitions with equal probability). The algorithm then proceed in two steps:
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initialization (Step 5-7) and weighted alternating minimization (Step 8-11). In

the initialization part, we compute SVD of the matrix RΩ(M̃) to obtain its

top-r left singular vectors U (0). We then use trim U (0) to obtain U
∧(0)

: for row

i of U (0), if its row norm is larger than 4‖Ai‖/‖A‖F , make the entire row to

be zero; let the resulted matrix be Ũ (0); we then compute its column space as

U
∧(0)

. The goal of Step 8-11 is to solve the following non-convex problem via

alternating minimization:

min
U,V

∑
(i,j)∈Ω

wij(e
T
i UV

T ej − M̃(i, j))2, (D.1)

where ei, ej are the standard basis vectors. After running T iterations, the

algorithm outputs U
∧(T )

and V
∧(T )

, which are a rank-r approximation of M̃

presented in the factored form.

D.2 Sampling

We describe a way to sample m elements in O(m log(n)) time using

distribution qij defined in Eq. (5.1). Naively one can compute all the n2 entries

of min{qij, 1} and toss a coin for each entry, which takes O(n2) time. Instead

of this binomial sampling we can switch to row wise multinomial sampling. For

this, first estimate the expected number of samples per row mi = m( ||Ai||2
2||A||2F

+ 1
2n

).

Now sample m1 entries from row 1 according to the multinomial distribution,

q̃1j =
m

m1

· ( ||A1||2

2n||A||2F
+
||Bj||2

2n||B||2F
) =

||A1||2
2n||A||2F

+
||Bj ||2

2n||B||2F
||Ai||2
2||A||2F

+ 1
2n

.

Note that
∑

j q̃1j = 1. To sample from this distribution, we can generate a

random number in the interval [0, 1], and then locate the corresponding column
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Algorithm 11: WAltMin (Subroutine 2 of (Bhojanapalli et al.,
2015))

Input: PΩ(M̃) ∈ Rn1×n2 , Ω, r, q
∧
, and T .

Output: U
∧(T )

∈ Rn1×r and V
∧(T )

∈ Rn2×r.
1 for i← 1 to n1, j ← 1 to n2 do
2 wij = 1/q

∧
ij if q

∧
ij > 0; otherwise wij = 0.

3 end
4 Divide Ω in 2T + 1 equal uniformly random subsets, i.e.,

Ω = {Ω0, . . . ,Ω2T}.
5 RΩ0(M̃) = w

⊙
PΩ0(M̃).

6 U (0)Σ(0)(V (0))T = SVD(RΩ0(M̃), r).

7 Trim U (0) to get U
∧(0)

.
8 for t← 0 to T − 1 do

9 V
∧(t+1)

= arg minV ‖R
1/2
Ω2t+1

(M̃ − U
∧(t)

V T )‖2
F ;

10 U
∧(t+1)

= arg minU ‖R
1/2
Ω2t+2

(M̃ − U(V
∧(t+1)

)T )‖2
F .

11 end
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index by binary searching over the cumulative distribution function (CDF) of

q̃1j . This takes O(n) time for setting up the distribution and O(m1 log(n)) time

to sample. For subsequent row i, we only need O(mi log(n)) time to sample mi

entries. This is because for binary search to work, only O(mi log(n)) entries

of the CDF vector needs to be computed and checked. Note that the specific

form of q̃ij ensures that its CDF entries can be updated in an efficient way

(since we only need to update the linear shift and scale). Hence, sampling

m elements takes a total O(m log(n)) time. Furthermore, the error in this

model is bounded up to a factor of 2 of the error achieved by the Binomial

model (Candès and Recht, 2009; Kannan et al., 2014).

D.3 Proof of Theorem 5.3.2

Our proof will use the following lemma.

Lemma D.3.1. Let x, y ∈ Rk be two vectors that are independently uni-

formly distributed on the unit sphere Sk−1. Let u = 〈x, y〉, then (u + 1)/2 ∼

Beta(k−1
2
, k−1

2
).

Proof. Without loss of generality, we assume that x = [1, 0, ..., 0] and y =

[u, y(2), ..., y(k)]. According to the coarea formula (Nicolaescu, 2018, Example

9.1.10), we have for 0 ≤ a ≤ b ≤ 1,

P[a ≤ u ≤ b] = σk−2

∫ b

a

(1− t2)(k−3)/2 dt,

where σm ∈ R denotes the area of the unit m-dimensional sphere Sm. The
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probability density function of u is

P[u = x] = σk−2
d

dx

∣∣∣∣
h=0

∫ x+h

x

(1− t2)(k−3)/2 dt ∝ (1− x2)(k−3)/2.

The last equation implies that

P
[
u+ 1

2
= x

]
∝ x(k−3)/2(1− x)(k−3)/2.

Hence, u+1
2

has Beta(k−1
2
, k−1

2
) distribution.

Now we are ready to prove Theorem 5.3.2, which is restated below.

Theorem. Let f : Rd → Rm be the rescaled JL map defined in Definition 5.5.

Given two arbitrary vectors x, y ∈ Rd, for any ε, δ ∈ (0, 1/2), if m = O( 1
ε2

),

then with probability at least 3/4,

| 〈f(x), f(y)〉 − 〈x, y〉 | ≤ p(θx,y,m)‖x‖2‖y‖2, (D.2)

where θx,y is the angle between x and y, and p(·, ·) is defined in Definition 5.3.2.

Proof. We will show that

E[(〈f(x), f(y)〉 − 〈x, y〉)2] = p(θx,y,m)2‖x‖2
2‖y‖2

2/4. (D.3)

If (D.3) holds, then applying Markov’s inequality gives the desired bound:

P(| 〈f(x), f(y)〉 − 〈x, y〉 | ≥ p(θx,y,m)‖x‖2‖y‖2) ≤ E[(〈f(x), f(y)〉 − 〈x, y〉)2]

p(θx,y,m)2‖x‖2
2‖y‖2

2

≤ 1

4
. (D.4)

To prove (D.3), note that
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1. Since 〈f(x), f(y)〉 =
〈
f( x
‖x‖2 ), f( y

‖y‖2 )
〉
‖x‖2‖y‖2, without loss of general-

ity we can assume ‖x‖2 = ‖y‖2 = 1 and prove that

E[(〈f(x), f(y)〉 − 〈x, y〉)2] = p(θx,y,m)2/4.

2. The random Gaussian matrix G will project x and y on a random

subspace, so without loss of generality we can assume that x = e1 and

y = e1 cos(θx,y) + e2 sin(θx,y), where e1 and e2 are the standard basis

vectors in Rd.

Let g1, g2 ∈ Rk be the first two columns of G. Let u =
〈

g1

‖g1‖2 ,
g2

‖g2‖2

〉
, then

according to Lemma D.3.1, u+1
2
∼ Beta(m−1

2
, m−1

2
) is a random variable with

Beta-distribution. Since x = e1 and y = e1 cos(θx,y) + e2 sin(θx,y), we can write

〈Gx,Gy〉 as

〈Gx,Gy〉 = 〈g1, g1 cos(θx,y) + g2 sin(θx,y)〉

= ‖g1‖2
2 cos(θx,y) + ‖g1‖2‖g2‖2u sin(θx,y).

Besides, we have ‖Gx‖2 = ‖g1‖2 and

‖Gy‖2
2 = ‖g1 cos(θx,y) + g2 sin(θx,y)‖2

2

= ‖g1‖2
2 cos2(θx,y) + 2‖g1‖2‖g2‖2u cos(θx,y) sin(θx,y) + ‖g2‖2

2 sin2(θx,y).

Let g =
‖g1‖22
‖g2‖22

, then g ∼ F(m,m) is a random variable with F-distribution. We

can write 〈f(x), f(y)〉 as a function of two random variables g and u:

〈f(x), f(y)〉 =
〈Gx,Gy〉
‖Gx‖2‖Gy‖2

=

√
g cos(θx,y) + u sin(θx,y)√

g cos2(θx,y) + sin2(θx,y) + 2u
√
g sin(θx,y) cos(θx,y)

.
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Let γ = 〈f(x), f(y)〉. The last step is to write E[(〈f(x), f(y)〉 − 〈x, y〉)2] as an

expectation over the two random variables g and u:

E[(〈f(x), f(y)〉 − 〈x, y〉)2]

= E[〈f(x), f(y)〉2]− 2 cos(θx,y)E[〈f(x), f(y)〉] + cos2(θx,y)

= E
g,u
γ2 − 2 cos(θx,y) E

g,u
γ + cos2(θx,y)

= p(θx,y,m)2/4,

where the last inequality follows from the definition of p(θ,m) given in Defi-

nition 5.3.2. We have proved (D.3) when x and y are unit-norm vectors. As

shown in (D.4), applying the Markov’s inequality gives Theorem 5.3.2.
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