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1 Problem

We consider the following problem: given two matrices A and B, find a rank-r approximation of their
product ATB. This type of linear algebra problem has many applications in the machine learning
and statistics domain. For example, if A = B, then this general problem reduces to the well-known
problem of finding principal components of a given data matrix. Another example is the low-rank
approximation of a co-occurrence matrix ATB, where A may be a user-by-query matrix and B may be
a user-by-ad matrix, so ATB computes the joint counts for each query-ad pair. As a third example,
ATB can be regarded as a cross-correlation matrix between two sets of variables (e.g., two different
genomic datasets). A low-rank approximation of their correlation matrix ATB can be used as a tool for
understanding the association between different variables (e.g., the canonical-correlation analysis [3]).

We assume that the input matrices A and B are very large and stored in disk. Since disk I/O usually
dominates the runtime, we prefer pass-efficient algorithms, i.e., algorithms that only require a few
constant number of passes over the input matrices. A naive approach for solving the given problem is to
first compute the matrix product ATB, and then perform truncated SVD to get a rank-r approximation.
However, this naive approach is quite inefficient because ATB could be still quite large and cannot fit into
memory, and performing standard SVD using iterative methods (e.g., Lanczos algorithm and Arnoldi’s
algorithm [6]) need at least r passes over ATB.

A two-pass algorithm for directly computing a low-rank approximation without explicitly computing
the product matrix ATB is proposed by [2], which works as follows. Given A ∈ Rd×n and B ∈ Rd×n,
in the first pass, we compute the norm of every column vector of A and B, respectively. We then
independently sample each entry (i, j) of ATB with probability min{1, qij} defined as

qij := m · ( ||Ai||
2

||A||2F
+
||Bj ||2

||B||2F
),

where m denotes sampling complexity, i.e., the number of samples that are expected to get, and ||Ai||
(or ||Bj ||) is the norm of the i-th (or j-th) column vector of A (or B). Let Ω ⊂ [n] × [n] be the set of
sample locations obtained from this biased sampling probability. In the second pass, we compute the
corresponding sample value ATi Bj for every location (i, j) ∈ Ω. After two passes, we get an incomplete
matrix of ATB with known values only at locations specified by Ω. The next step is to run weighted
Alternating Least Square (ALS) procedure on this incomplete matrix to get the low-rank factor matrices.
The weighted ALS procedure belongs to matrix completion algorithms, and we will not describe its
details in this report as it is irrelevant to our main content.



In this project, our goal is to modify this two-pass algorithm into a one-pass algorithm. The motivation
is that if we can compute low-rank approximation of ATB in one-pass, then the input matrices A and
B need not to be stored in disk beforehand, instead, they can possibly come from live data streams.
This streaming model of computation as well as the related online algorithms is quite attractive in the
big data era. The rest of this report has the following structure. In Section 2, the intuition behind our
one-pass algorithm is explained in details. In Section 3 and 4, we will present the main results as well
as the proof sketch.

2 Key Idea

Recall that in the two-pass algorithm proposed by [2], the main job of the second pass is to calculate
the inner product ATi Bj for each location (i, j) specified by Ω. If we can obtain good approximation of
these inner products in the first pass, then we would save the second pass. This can be done by using
Johnson-Lindenstrauss (JL) transform, which, with high probability, preserves inner products within
certain additive error. More formally, we follow the definition from [9]:

Definition 1. A random matrix Π ∈ Rk×d forms a Johnson-Lindenstrauss transform with parameters
ε, δ, f or JLT(ε, δ, f) for short, if with probability at least 1 − δ, for any f -element subset V ⊂ Rd, for
all v, v′ ∈ V it holds that |〈Πv,Πv′〉 − 〈v, v′〉| ≤ ε||v|| · ||v′||.

Our one-pass algorithm works as follows. In the first pass, we perform JL transform on the input
matrices A and B to get the sketches ΠA and ΠB (assume that the sketches are small enough to fit
into memory). We then follow the same procedures as in the two-pass algorithm, except that instead
of using a second pass to calculate the inner product ATi Bj , we now approximate it by (ΠAi)

T (ΠBj).

There are many ways to construct a JL transform matrix as well as its variations such as fast JL
transform [1] and sparse JL transform [5]. In this project, we focus on the simplest construction, whose
entries are i.i.d. Gaussian random variables. The following lemma is again taken from [9]:

Lemma 1. Let 0 < ε, δ < 1, and Π ∈ Rk×d be a random matrix where the entries Πij are i.i.d.
N(0, 1/k) random variables. If k = Ω(log(f/δ)ε−2), then Π is a JLT(ε, δ, f).

As indicated by the above lemma, a crucial problem is to determine the sketching dimension k. On one
hand, we want to keep a small k so that the sketched matrices can fit into memory. On the other hand,
the parameter k controls how much information is lost during sketching, and hence a larger k gives a
higher accuracy in approximating the inner products. In the following two sections, we will present the
main theorem that we currently have derived. It characterizes the interaction between the sketching
dimension k, the sampling complexity m, and the accuracy of the output.

3 Main Result

Let Π ∈ Rk×d be a random matrix with each entry being i.i.d. N(0, 1/k). Denote Ã = ΠA and B̃ = ΠB.
We independently sample each entry (i, j) ∈ [n]× [n] of ÃT B̃ with probability q̂ij = min{1, qij} where

qij := m · ( ||Ãi||
2

n||Ã||2F
+
||B̃j ||2

n||B̃||2F
). (1)



Let the output of weighted ALS procedure be ÂTBr. Then the following theorem provides a bound for

the spectral-norm error ||ATB − ÂTBr|| in terms of the number of samples m, the dimension of the
random matrix k, and the number of iterations performed T .

Theorem 1. Let the number of samples m be

m =
C1

γ
·

(
||Ã||2F + ||B̃||2F
||ÃT B̃||F

)2

· nr
3

ε2
·
(
σ̃1
σ̃r

)2

log(n) log2

(
||Ã||F + ||B̃||F

ζ

)
,

where C1 is some global constant independent of A and B, and σ̃i is the i-th singular values of

ÃT B̃. Let the number of iterations be T = log( ||Ã||F+||B̃||F
ζ ). Define the maximum stable rank as

r̃ := max{ ||A||
2
F

||A||2 ,
||B||2F
||B||2 }. Suppose the random Gaussian matrix Π ∈ Rk×d has dimension

k ≥ C2 ·
max{r̃, log(2n)}+ log (3/γ)

ε2
, (2)

where C2 is some global constant independent of A and B, Then with probability at least 1 − γ, the

output ÂTBr satisfies

||ATB − ÂTBr|| ≤ ||ATB − (ATB)r||+ ε||ATB − (ATB)r||F + ζ + η||A||||B||,

where η := max{2ε+ ε2(r̃ +
√
r), 2ε+ ε2r̃ + ε1.5

√
2r̃CAB(

√
r + r̃)}, and CAB := ||ATB||F

||A||F ||B||F ≤ 1.

4 Proof

We first introduce three lemmas that connect Ã and B̃ with A and B.

Lemma 2. Let k = Ω( log(2n/δ)
ε2

), then with probability at least 1− δ,

(1− ε)||A||2F ≤ ||Ã||2F ≤ (1 + ε)||A||2F , (1− ε)||B||2F ≤ ||B̃||2F ≤ (1 + ε)||B||2F ,

||ÃT B̃ −ATB||F ≤ ε||A||F ||B||F .

Proof. This is a standard result of JL transformation, e.g., see Definition 2.3 and Theorem 2.1 of [9]
and Lemma 6 of [7] .

Lemma 3. Let k = Θ( r̃+log(1/δ)
ε2

), where r̃ = max{ ||A||
2
F

||A||2 ,
||B||2F
||B||2 } is the maximum stable rank, then with

probability at least 1− δ,
||ÃT B̃ −ATB|| ≤ ε||A||||B||.

Proof. This follows from a recent paper [4].

Lemma 4. Let σ̃i and σ̃i be the i-th singular values of ÃT B̃ and ATB, respectively. For any integer r
such that 1 ≤ r ≤ n, we have ∣∣∣∣∣∣

√√√√ r∑
i=1

σ2i −

√√√√ r∑
i=1

σ̃2i

∣∣∣∣∣∣ ≤ √r||ÃT B̃ −ATB||.



Proof. Since ÃT B̃ = ATB + ÃT B̃ −ATB, we can apply Weyl’s inequality [8]1 to get

σ̃i ≤ σi + ||ÃT B̃ −ATB||, ∀1 ≤ i ≤ n.

Taking squares of both sides and summing over 1 ≤ i ≤ r gives

r∑
i=1

σ̃2i ≤
r∑
i=1

σ2i + 2||ÃT B̃ −ATB||

(
r∑
i=1

σi

)
+ r||ÃT B̃ −ATB||2 (3)

≤
r∑
i=1

σ2i + 2||ÃT B̃ −ATB||
√
r

√√√√ r∑
i=1

σ2i + r||ÃT B̃ −ATB||2 (4)

≤

√√√√ r∑
i=1

σ2i +
√
r||ÃT B̃ −ATB||

2

. (5)

Therefore, we get
√∑r

i=1 σ̃
2
i −

√∑r
i=1 σ

2
i ≤
√
r||ÃT B̃ −ATB||. In the above analysis, the role of ÃT B̃

and ATB is interchangeable, so it is also true that
√∑r

i=1 σ
2
i −

√∑r
i=1 σ̃

2
i ≤
√
r||ÃT B̃ − ATB||, and

hence the lemma follows.

Now we are ready to prove the main theorem stated in the previous section.

Proof. Suppose Π is fixed. Because the sampling probability in Eq. (1) depends only on Ã and B̃, the
algorithm works as if we were computing a low-rank approximation for ÃT B̃. Therefore, the original
theoretical bound (e.g., Theorem 3.4 of [2]) holds, which is formally stated as follows.

Let the number samples m be

m =
C1

γ
·

(
||Ã||2F + ||B̃||2F
||ÃT B̃||F

)2

· nr
3

ε2
·
(
σ̃1
σ̃r

)2

log(n) log2

(
||Ã||F + ||B̃||F

ζ

)
, (6)

where σ̃i is the i-th singular values of ÃT B̃. Let T = log( ||Ã||F+||B̃||F
ζ ), then the output ÂTBr satisfies

(w.p. ≥ 1− γ/3):

||ÃT B̃ − ÂTBr|| ≤ ||ÃT B̃ − (ÃT B̃)r||+ ε||ÃT B̃ − (ÃT B̃)r||F + ζ. (7)

To get a bound on ||ATB − ÂTBr||, we first apply triangle inequality to (7):

||ATB − ÂTBr|| ≤ ||ATB − ÃT B̃||+ ||ÃT B̃ − (ÃT B̃)r||+ ε||ÃT B̃ − (ÃT B̃)r||F + ζ. (8)

Note that since Eq. (8) holds with probability at least 1−γ/3 for any fixed Π, now suppose Π is chosen
randomly according to certain distribution, Eq. (8) should also hold with probability at least 1− γ/3.
We will use the randomness over Π in the following proof.

Next we bound ||ÃT B̃−(ÃT B̃)r|| and ||ÃT B̃−(ÃT B̃)r||F in terms of ||ATB−ÃT B̃|| and ||ATB−ÃT B̃||F .

1The original Weyl’s inequality applies to Hermitian matrices. For a general matrix M , we can construct a Hermitian

matrix

[
0 M
M∗ 0

]
which has eigenvalues ±σ1(M),±σ2(M), ...,±σn(M). More results about Weyl’s inequality can be

found from [8].



To bound ||ÃT B̃ − (ÃT B̃)r||, observe that ÃT B̃ can be written as ÃT B̃ − ATB + ATB, so applying
Weyl’s inequality [8] gives

||ÃT B̃ − (ÃT B̃)r|| ≤ ||ATB − (ATB)r||+ ||ÃT B̃ −ATB||. (9)

To bound ||ÃT B̃ − (ÃT B̃)r||F , observe that it is equivalent to bounding

n∑
i=r+1

σ̃2i =

n∑
i=1

σ̃2i −
r∑
i=1

σ̃2i = ||ÃT B̃||2F − ||(ÃT B̃)r||2F . (10)

We next bound ||ÃT B̃||F and ||(ÃT B̃)r||F as

||ÃT B̃||F ≤ ||ATB||F + ||ÃT B̃ −ATB||F (11)

||(ÃT B̃)r||F ≥ ||(ATB)r||F −
√
r||ÃT B̃ −ATB||, (12)

where Eq. (11) follows from the triangle inequality, and Eq. (12) follows from Lemma 4. However, the
lower bound in (12) is useful only when its right-hand side is greater than 0, which may not be true.
Hence, we divide the following analysis into two cases.

Note that the following analysis will make use of Lemma 2-3 as well as Eq. (7). Each of them holds
with probability at least 1 − γ/3 (assuming that k is chosen according to Eq. (2)), so the following
analysis fails with probability at most γ.

Case 1. ||(ATB)r||F ≤
√
r||ÃT B̃ −ATB||.

Recall that our current goal is to bound ||ÃT B̃ − (ÃT B̃)r||F .

||ÃT B̃ − (ÃT B̃)r||F ≤ ||ÃT B̃||F ≤ ||ATB||F + ||ÃT B̃ −ATB||F (13)

≤ ||ATB − (ATB)r||F + ||(ATB)r||F + ||ÃT B̃ −ATB||F (14)

≤ ||ATB − (ATB)r||F +
√
r||ÃT B̃ −ATB||+ ||ÃT B̃ −ATB||F , (15)

where the last inequality follows from the assumption of Case 1. Substituting Eqs. (15) and (9) into
(8) gives that

||ATB − ÂTBr|| −
(
||ATB − (ATB)r||+ ε||ATB − (ATB)r||F + ζ

)
(16)

≤ (2 + ε
√
r)||ÃT B̃ −ATB||+ ε||ÃT B̃ −ATB||F (17)

≤ (2 + ε
√
r)ε||A||||B||+ ε2||A||F ||B||F (18)

≤ (2 + ε
√
r)ε||A||||B||+ ε2r̃||A||||B|| (19)

=
(
2ε+ ε2(r̃ +

√
r)
)
||A||||B|| (20)

Eq.(18) follows from Lemma 2 and 3, while Eq. (19) follows from the definition of the maximum stable

rank r̃ := max{ ||A||
2
F

||A||2 ,
||B||2F
||B||2 }.

Case 2. ||(ATB)r||F >
√
r||ÃT B̃ −ATB||.



In this case, we have a nontrivial lower bound for ||(ÃT B̃)r||F (provided in Eq. (12)). Therefore,

||ÃT B̃ − (ÃT B̃)r||2F = ||ÃT B̃||2F − ||(ÃT B̃)r||2F (21)

≤
(
||ATB||F + ||ÃT B̃ −ATB||F

)2
−
(
||(ATB)r||F −

√
r||ÃT B̃ −ATB||

)2
(22)

≤ ||ATB − (ATB)r||2F + ||ÃT B̃ −ATB||2F + 2||ATB||F ||ÃT B̃ −ATB||F
+ 2||(ATB)r||F

√
r||ÃT B̃ −ATB|| (23)

≤ ||ATB − (ATB)r||2F + ||ÃT B̃ −ATB||2F + 2||ATB||F ||ÃT B̃ −ATB||F
+ 2
√
r||ATB||F ||ÃT B̃ −ATB||, (24)

where the first inequality follows from Eqs. (11) and (12), the last inequality follows from ||(ATB)r||F ≤
||ATB||F . Taking square root over both sides of Eq. (24) gives the following inequality

||ÃT B̃ − (ÃT B̃)r||F − ||ATB − (ATB)r||F (25)

≤ ||ÃT B̃ −ATB||F +

√
2
√
r||ATB||F ||ÃT B̃ −ATB||+ 2||ATB||F ||ÃT B̃ −ATB||F (26)

≤ ε||A||F ||B||F +

√
2
√
rCAB||A||F ||B||F ε||A||||B||+ 2CAB||A||F ||B||F ε||A||F ||B||F (27)

≤
(
εr̃ + ε0.5

√
2r̃CAB(

√
r + r̃)

)
||A||||B||. (28)

Eq.(27) follows from Lemma 2 and 3, and the definition of CAB := ||ATB||F
||A||F ||B||F ≤ 1 . Eq. (28) follows

from the definition of the maximum stable rank r̃.

Substituting Eqs. (28) and (9) into (8) gives us a bound on ||ATB − ÂTBr||:

||ATB − ÂTBr|| −
(
||ATB − (ATB)r||+ ε||ATB − (ATB)r||F + ζ

)
(29)

≤ 2||ÃT B̃ −ATB||+ ε

(
εr̃ + ε0.5

√
2r̃CAB(

√
r + r̃)

)
||A||||B|| (30)

≤
(

2ε+ ε2r̃ + ε1.5
√

2r̃CAB(
√
r + r̃)

)
||A||||B||, (31)

where the last inequality follows from Lemma 3.

By combining results of the above two cases (Eqs. (20) and (31)), we can get the desired bound for

||ATB − ÂTBr||.

||ATB − ÂTBr|| ≤ ||ATB − (ATB)r||+ ε||ATB − (ATB)r||F + ζ + η||A||||B||, (32)

where η := max{2ε+ ε2(r̃ +
√
r), 2ε+ ε2r̃ + ε1.5

√
2r̃CAB(

√
r + r̃)}.

As mentioned earlier in our proof, the above analysis uses results from Lemma 2-3 and Eq. (7), and
each of them fails with probability less than γ/3 (provided that the values of m, T , and k satisfy the
assumptions in the theorem). Therefore, Eq. (32) holds with probability at least 1 − γ for the chosen
m, T , and k.
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