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Abstract

We characterize the effectiveness of a natural and classic algorithm for recovering
the Markov graph of a general discrete pairwise graphical model from i.i.d. samples.
The algorithm is (appropriately regularized) conditional maximum likelihood,
which involves solving a convex program for each node; for Ising models this is
`1-constrained logistic regression, while for more alphabets an `2,1 group-norm
constraint needs to be used. We show that this algorithm can recover any arbitrary
discrete pairwise graphical model, and also characterize its sample complexity as a
function of model width, alphabet size, edge parameter accuracy, and the number
of variables. We show that along every one of these axes, it matches or improves
on all existing results and algorithms for this problem. Our analysis applies a sharp
generalization error bound for logistic regression when the weight vector has an `1
constraint (or `2,1 constraint) and the sample vector has an `∞ constraint (or `2,∞
constraint). We also show that the proposed convex programs can be efficiently
optimized in Õ(n2) running time (where n is the number of variables) under the
same statistical guarantee. Our experimental results verify our analysis.

1 Introduction

An undirected graphical model, or Markov random field (MRF), provides a general framework for
modeling the interaction between random variables. It has applications in a wide range of areas,
including computer vision [CLTW10], bio-informatics [MCK+12], and sociology [EPL09].

This paper focuses on the structure learning problem: given i.i.d samples from a Markov random
field, the goal is to recover the underlying dependency graph with high probability. We are specifically
interested in the discrete pairwise graphical models, which includes the famous Ising models (for
binary variables) and the pairwise graphical models over general (non-binary) alphabet.

In a classic paper, Ravikumar, Wainwright and Lafferty [RWL10] considered the structure learning
problem for Ising models. They showed that `1-regularized logistic regression provably recovers
the correct dependency graph with a very small number of samples by solving a convex program
for each variable. This algorithm was later generalized to multi-class logistic regression with
group-sparse regularization, which can learn MRFs with higher-order interactions and non-binary
variables [JRVS11]. A well-known limitation of [RWL10, JRVS11] is that the theoretical guarantees
only work for a restricted class of graphs. Specifically, they require that the underlying graph satisfies
technical incoherence assumptions, that are difficult to validate or check.

A large amount of recent work has since proposed various algorithms to obtain provable learning
results for general graphs without requiring incoherence assumptions. We now describe the (most
related part of the extensive) related work, followed by our results and comparisons (see Table 1).
For a discrete pairwise graphical model, let n be the number of variables and k be the alphabet size;
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Paper Assumptions Sample complexity (N )

Greedy
algorithm [HKM17]

1. Alphabet size k ≥ 2

O(exp( k
O(d) exp(O(d2λ))

ηO(1) ) ln(nk
ρ

))
2. Model width ≤ λ
3. Degree ≤ d
4. Minimum edge weight ≥ η > 0
5. Probability of success ≥ 1− ρ

Sparsitron [KM17] 1. Alphabet size k ≥ 2
O(λ

2k5 exp(O(λ))

η4
ln(nk

ρη
))2. Model width ≤ λ

`2,1-constrained logistic
regression [this paper]

3. Minimum edge weight ≥ η > 0
O(λ

2k4 exp(O(λ))

η4
ln(nk

ρ
))4. Probability of success ≥ 1− ρ

Table 1: Comparison of sample complexity for graph recovery of a discrete pairwise graphical model with
alphabet size k. For k = 2 (i.e., Ising models), our algorithm reduces to the `1-constrained logistic regression
(see Appendix A for a discussion of related work in the special case of learning Ising models).

define the model width λ as the maximum neighborhood weight (see Definition 1 and 2 for the precise
definition). For the case of k = 2 (i.e., Ising models), Santhanam and Wainwright [SW12] provided
an information-theoretic lower bound on the number of samples N , which scales as Ω(exp(λ) ln(n)).

As shown in Table 1, Hamilton, Koehler, and Moitra [HKM17] proposed a greedy algorithm to
learn pairwise (as well as higher-order) MRFs with general alphabet. Their algorithm generalizes
Bresler’s approach for learning Ising models [Bre15]. The sample complexity in [HKM17] grows
logarithmically in n, but doubly exponentially in the width λ (only single exponential is necessary
for learning Ising models [SW12]). Klivans and Meka [KM17] provided a different algorithmic and
theoretical approach by setting this up as an online learning problem and leveraging results from the
Hedge algorithm therein. Their algorithm Sparsitron achieves single-exponential dependence on λ.

Our contributions: We show that the `2,1-constrained logistic regression can recover the underlying
graph from i.i.d. samples of a discrete pairwise graphical model. For the special case of Ising models,
this reduces to an `1-constrained logistic regression. We make no incoherence assumption on the
graph structure other than what is necessary for identifiability. Our sample complexity scales as
Õ(k4), which improves the previous best result with Õ(k5) dependency (see Table 1). Our analysis
applies a sharp generalization error bound for logistic regression when the weight vector has an `2,1
constraint (or `1 constraint) and the sample vector has an `2,∞ constraint (or `∞ constraint). Our
key insight is that a generalization bound can be used to control the squared distance between the
predicted and true logistic functions, which then implies an `∞ norm bound between the weights. We
show that the proposed algorithms can run in Õ(n2) time without affecting the statistical guarantees
(This part is in Appendix J due to space limit). Note that Õ(n2) is an efficient runtime for graph
recovery over n nodes. Previous algorithms in [HKM17, KM17] require Õ(n2) runtime for learning
pairwise graphical models. We empirically compare the proposed algorithm with the algorithm
in [KM17], and show that our algorithm needs fewer samples for graph recovery (see Section 2.4).

Notation. We use [n] to denote the set {1, 2, · · · , n}. For a vector x ∈ Rn, we use xi or x(i)
to denote its i-th coordinate. We use x−i ∈ Rn−1 to denote the vector after deleting the i-th
coordinate. For matrix A ∈ Rn×k, we use A(i, j) to denote its (i, j)-th entry. We use A(i, :) ∈ Rk
and A(:, j) ∈ Rn to the denote the i-th row vector and the j-th column vector. The `p,q norm of a
matrix A ∈ Rn×k is defined as ‖A‖p,q = ‖[‖A(1, :)‖p, ..., ‖A(n, :)‖p]‖q. We use 〈·, ·〉 to represent
the dot product between two vectors 〈x, y〉 =

∑
i xiyi or two matrices 〈A,B〉 =

∑
ij A(i, j)B(i, j).

2 Main results

We start with the special case of binary variables (i.e., Ising models). Pseudocode of the proposed
algorithms, the detailed proofs, and more experiments can be found in the appendix.

2.1 Learning Ising models

We first give a formal definition of an Ising model distribution.

Definition 1. Let A ∈ Rn×n be a symmetric weight matrix with Aii = 0 for i ∈ [n]. Let θ ∈ Rn be
a mean-field vector. The n-variable Ising model is a distribution D(A, θ) on {−1, 1}n that satisfies

P
Z∼D(A,θ)

[Z = z] ∝ exp(
∑

1≤i<j≤n

Aijzizj +
∑
i∈[n]

θizi). (1)
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The dependency graph of D(A, θ) is an undirected graph G = (V,E), with vertices V = [n] and
edges E = {(i, j) : Aij 6= 0}. The width is defined as λ(A, θ) = maxi∈[n](

∑
j∈[n] |Aij |+ |θi|). Let

η(A, θ) be the minimum edge weight, i.e., η(A, θ) = mini,j∈[n]:Aij 6=0 |Aij |.

One important property of an Ising model distribution is that the conditional distribution of any
variable given the rest variables follows a logistic (sigmoid) function σ(z) = 1/(1 + e−z).
Fact 1. Let Z ∼ D(A, θ) and Z ∈ {−1, 1}n. For any i ∈ [n], the conditional probability of the i-th
variable Zi ∈ {−1, 1} given the states of all other variables Z−i ∈ {−1, 1}n−1 is

P[Zi = 1|Z−i = x] =
exp(

∑
j 6=iAijxj + θi)

exp(
∑
j 6=iAijxj + θi) + exp(−

∑
j 6=iAijxj − θi)

= σ(
〈
w, x′

〉
), (2)

where x′ = [x, 1] ∈ {−1, 1}n, and w = 2[Ai1, · · · , Ai(i−1), Ai(i+1), · · · , Ain, θi] ∈ Rn. Moreover,
w satisfies ‖w‖1 ≤ 2λ(A, θ), where λ(A, θ) is the model width defined in Definition 1.

We are given N i.i.d. samples {z1, · · · , zN}, zi ∈ {−1, 1}n from an Ising model D(A, θ). For
simplicity, let us focus on the n-th variable (the algorithm is the same for other variables). We first
transform the samples into {(xi, yi)}Ni=1, where xi = [zi1, · · · , zin−1, 1] ∈ {−1, 1}n and yi = zin ∈
{−1, 1}. By Fact 1, P[yi = 1|xi = x] = σ(〈w∗, x〉) where w∗ = 2[An1, · · · , An(n−1), θn] ∈ Rn
satisfies ‖w∗‖1 ≤ 2λ(A, θ). Suppose that λ(A, θ) ≤ λ, w∗ can be estimated by the following
`1-constrained logistic regression problem

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (3)

We then estimate Anj as Ânj = ŵj/2, for j ∈ [n− 1]. The following theorem shows that solving (3)
for each variable gives us a good estimator of Aij .
Theorem 1. Let D(A, θ) be an unknown n-variable Ising model distribution. Suppose that the
D(A, θ) has width λ(A, θ) ≤ λ. Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. samples satisfies
N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability at least 1− ρ, solving the `1-constrained
logistic regression for each variable produces Â that satisfies maxi,j∈[n] |Aij − Âij | ≤ ε.

Suppose that D(A, θ) has minimum edge weight η(A, θ) ≥ η > 0, then we can estimate the
dependency graph as follows: for i < j ∈ [n], edge (i, j) is in the graph if and only if Âij ≥ η/2.
Theorem 1 implies that this recovers the graph with nearly optimal sample complexity [SW12].
Corollary 1. Suppose that η(A, θ) ≥ η > 0. If we set ε < η/2 in Theorem 1, which corresponds
to sample complexity N = O(λ2 exp(O(λ)) ln(n/ρ)/η4), then with probability at least 1− ρ, the
above algorithm recovers the dependency graph.

2.2 Learning pairwise graphical models over general alphabets

We first give a formal definition of the pairwise graphical model over general alphabets.
Definition 2. Let k be the alphabet size. LetW = {Wij ∈ Rk×k : i 6= j ∈ [n]} be a set of weight
matrices satisfying Wij = WT

ji . Without loss of generality, assume that for any i 6= j, each row as
well as each column of Wij has zero mean. Let Θ = {θi ∈ Rk : i ∈ [n]} be a set of external field
vectors. Then the n-variable pairwise graphical model D(W,Θ) is a distribution over [k]n where

P
Z∼D(W,Θ)

[Z = z] ∝ exp(
∑

1≤i<j≤n

Wij(zi, zj) +
∑
i∈[n]

θi(zi)). (4)

The dependency graph of D(W,Θ) is an undirected graph G = (V,E), with vertices V = [n] and
edges E = {(i, j) : Wij 6= 0}. Define η(W,Θ) = min(i,j)∈E maxa,b |Wij(a, b)|. The width of
D(W,Θ) is defined as λ(W,Θ) = maxi,a(

∑
j 6=i maxb∈[k] |Wij(a, b)|+ |θi(a)|).

The assumption that each row (and column) vector of Wij has zero mean is without loss of generality
(see Fact 8.2 of [KM17]). The following fact is analogous to Fact 1 for the Ising model distribution.
Fact 2. Let Z ∼ D(W,Θ) and Z ∈ [k]n. For any i ∈ [n], and any α 6= β ∈ [k], we have

P[Zi = α|Zi ∈ {α, β}, Z−i = x] = σ(
∑
j 6=i

(Wij(α, xj)−Wij(β, xj)) + θi(α)− θi(β)). (5)
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We are given N i.i.d. samples {z1, · · · , zN}, where zi ∈ [k]n ∼ D(W,Θ). For simplicity, let us
again focus on the n-th variable (the algorithm directly extends to other variables). The goal is to
estimate matrices Wnj for all j ∈ [n− 1]. To use Fact 2, we first fix a pair of values α 6= β ∈ [k],
and let S be the subset of samples such that the n-th variables zn ∈ {α, β}. We next transform the
samples in S to {(xi, yi)}|S|i=1 as follows: xi = OneHotEncode([zi−n, 1]) ∈ {0, 1}n×k, yi = 1 if
zin = α, and yi = −1 if zin = β. Here OneHotEncode(·) : [k]n → {0, 1}n×k is a function that maps
a value i ∈ [k] to the standard basis vector ei ∈ {0, 1}k, i.e., ei has a single 1 at the i-th entry.

For samples {(xi, yi)}|S|i=1 in set S, Fact 2 implies that P[y = 1|x] = σ(〈w∗, x〉), where w∗ ∈ Rn×k
satisfies w∗(j, :) = Wnj(α, :)−Wnj(β, :) for j ∈ [n− 1], and w∗(n, :) = [θi(α)− θi(β), 0, ..., 0].
Suppose that the width of D(W,Θ) satisfies λ(W,Θ) ≤ λ, then w∗ satisfies ‖w∗‖2,1 ≤ 2λ

√
k. We

can now form an `2,1-constrained logistic regression over the samples in S:

wα,β ∈ arg min
w∈Rn×k

1

|S|

|S|∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤ 2λ

√
k, (6)

To estimate the original matrices Wnj for all j ∈ [n− 1], we first create a new matrix Uα,β ∈ Rn×k
by centering the first n − 1 rows of wα,β , i.e., Uα,β(j, :) = wα,β(j, :) −

∑
a w

α,β(j, a)/k for
j ∈ [n− 1]. We then estimate each row of Wnj as Ŵnj(α, :) =

∑
β∈[k] U

α,β(j, :)/k.

The following theorem shows that Ŵij is a good estimator of Wij . Similar to the Ising model setting,
suppose that η(W,Θ) ≥ η, the dependency graph can be estimated as follows: for i < j ∈ [n], edge
(i, j) is in the graph if and only if maxa,b |Ŵij(a, b)| ≥ η/2.
Theorem 2. Let D(W,Θ) be an n-variable pairwise graphical model distribution with width
λ(W,Θ) ≤ λ and alphabet size k. Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. samples
N = O(λ2k4 exp(O(λ)) ln(nk/ρ)/ε4), then with probability at least 1 − ρ, the above algorithm
produces Ŵij ∈ Rk×k that satisfies |Wij(a, b)− Ŵij(a, b)| ≤ ε, for all i 6= j ∈ [n] and a, b ∈ [k].

2.3 Proof outline

Let D be a distribution over {−1, 1}n × {−1, 1}, where (x, y) ∼ D satisfies P[y = 1|x] =

σ(〈w∗, x〉). Let L(w) = E(x,y)∼D ln(1 + e−y〈w,x〉) and L̂(w) =
∑N
i=1 ln(1 + e−y

i〈w,xi〉)/N be
the expected and empirical loss. Suppose ‖w∗‖1 ≤ 2λ. Let ŵ ∈ arg minw L̂(w) s.t. ‖w‖1 ≤ 2λ.
We give a proof outline for learning Ising models (the general setting has a similar outline):

1. If the number of samples N = O(λ2 ln(n/ρ)/γ2), then L(ŵ)−L(w∗) ≤ O(γ). The proof
relies on a sharp generalization bound (see Lemma 7 in Appendix F).

2. For any w, we show that L(w) − L(w∗) ≥ Ex(σ(〈w, x〉) − σ(〈w∗, x〉))2. Hence, Step 1
implies that Ex(σ(〈ŵ, x〉)− σ(〈w∗, x〉))2 ≤ O(γ) (see Lemma 1 in Appendix C).

3. We use a result from [KM17] (Lemma 5 in Appendix C) to show that if the samples are
from an Ising model and γ = O(ε2 exp(−6λ)), then Step 2 implies that ‖ŵ − w∗‖∞ ≤ ε.

2.4 Experiments

We compare our algorithm with the Sparsitron algorithm in [KM17] on a two-dimensional 3-by-3
grid graph (i.e., n = 9). We experiment three alphabet sizes: k = 2, 4, 6. For each k, we simulate 100
runs, and in each run we generate the Wij matrices with random entries ±0.2. Sampling is done via
exactly computing the distribution. As shown in the following figure, our algorithm requires fewer
samples for successfully recovering the graphs. More experiments can be found in Appendix M.
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A Comparisons of sample complexity for learning Ising models

For the special case of learning Ising models (i.e., binary variables), we compare the sample com-
plexity between the proposed algorithm and the related work in Table 2. Note that the algorithms
in [RWL10, Bre15, VMLC16, LVMC18] are specifically designed for Ising models instead of general
pairwise graphical models. That is why they are not presented in Table 1. Our results show that
`1-constrained logistic regression can recover the underlying graph from i.i.d. samples of an Ising
model. We make no incoherence assumptions and achieve the state-of-the-art sample complexity.

Paper Assumptions Sample complexity (N )

Information-theoretic
lower bound (Thm 1
of [SW12])

1. Model width ≤ λ, and λ ≥ 1 max{ ln(n)
2η tanh(η) ,

2. Degree ≤ d d
8 ln( n8d ),

3. Minimum edge weight ≥ η > 0 exp(λ) ln(nd/4−1)
4ηd exp(η) }4. Mean field = 0

`1-regularized logistic
regression [RWL10]

Q∗ is the Fisher information matrix,

O(d3 ln(n))

S is set of neighbors of a given variable.
1. Dependency: ∃ Cmin > 0 such that

eigenvalues of Q∗SS ≥ Cmin

2. Incoherence: ∃ α ∈ (0, 1] such that
‖Q∗ScS(Q∗SS)−1‖∞ ≤ 1−α

3. Regularization parameter:

λN ≥ 16(2−α)
α

√
ln(n)
N

4. Minimum edge weight≥ 10
√
dλN/Cmin

5. Mean field = 0

6. Probability of success ≥ 1− 2e−O(λ2
NN)

Greedy
algorithm [Bre15]

1. Model width ≤ λ
O(exp( exp(O(dλ))

ηO(1) ) ln(nρ ))
2. Degree ≤ d
3. Minimum edge weight ≥ η > 0
4. Probability of success ≥ 1− ρ

Interaction
Screening [VMLC16]

1. Model width ≤ λ
2. Degree ≤ d O(max{d, 1

η2 }
3. Minimum edge weight ≥ η > 0 d3 exp(O(λ)) ln(nρ ))

4. Regularization parameter = 4
√

ln(3n2/ρ)
N

5. Probability of success ≥ 1− ρ

`1-regularized logistic
regression [LVMC18]

1. Model width ≤ λ
2. Degree ≤ d O(max{d, 1

η2 }
3. Minimum edge weight ≥ η > 0 d3 exp(O(λ)) ln(nρ ))

4. Regularization parameter O(
√

ln(n2/ρ)
N )

5. Probability of success ≥ 1− ρ

Sparsitron [KM17]
1. Model width ≤ λ

O(λ
2 exp(O(λ))

η4 ln( nρη ))2. Minimum edge weight ≥ η > 0
3. Probability of success ≥ 1− ρ

`1-constrained
logistic regression
[this paper]

1. Model width ≤ λ
O(λ

2 exp(O(λ))
η4 ln(nρ ))2. Minimum edge weight ≥ η > 0

3. Probability of success ≥ 1− ρ
Table 2: Comparison of the sample complexity required for graph recovery of an Ising model. The
second column lists the assumptions in the analysis of each algorithm. Given λ and η, d is bounded
by d ≤ λ/η.

As mentioned, Ravikumar, Wainwright and Lafferty [RWL10] consider `1-regularized logistic re-
gression for learning of sparse models in the high-dimensional setting. They require incoherence
assumptions that ensure, via conditions on sub-matrices of the Fisher information matrix, that sparse
predictors of each node are hard to confuse with a false set. Their analysis obtains significantly better
sample complexity compared to what is possible when these extra assumptions are not imposed (see
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Bento and Montanari [BM09]). The analysis of [RWL10] is of essentially the same convex program
as this work (except that we have an additional thresholding procedure). The main difference is that
they obtain a better sample guarantee but require significantly more restrictive assumptions.

B Algorithms for learning discrete pairwise graphical models

We provide pseudocode of the two algorithms presented in Section 2. Algorithm 1 learns Ising
models via `1-constrained logistic regression. Algorithm 2 learns general discrete graphical models
via `2,1-constrained logistic regression.

Algorithm 1 Learning Ising model via `1-constrained logistic regression
Input: N i.i.d. samples {z1, · · · , zN}, zm ∈ {−1, 1}n, for m ∈ [N ]; an upper bound on λ(A, θ) ≤
λ; a lower bound on η(A, θ) ≥ η > 0.
Output: Â ∈ Rn×n, and an undirected graph Ĝ on n nodes.

1: for each node i ∈ [n] do
2: for each sample m ∈ [N ] do
3: xm ← [zm−i, 1], ym ← zmi . Form samples (xm, ym) ∈ {−1, 1}n × {−1, 1}.
4: end for
5: Solve the convex program: . Any minimizer works if there are more than one.

6:
ŵ ← arg min

w∈Rn

1

N

N∑
m=1

ln(1 + e−y
m〈w,xm〉)

s.t. ‖w‖1 ≤ 2λ

7: Update the i-th row of Â:

8: Âij ←


ŵj/2 if j ≤ i− 1

0 if j = i

ŵj−1/2 if i+ 1 ≤ j ≤ n
9: end for

10: Form an undirected graph Ĝ on n nodes with edges {(i, j) : |Âij | ≥ η/2, i < j}.

C Supporting lemmas

Before proving the main theorems, we outline the lemmas that will be used in our proof. Proofs of
Theorem 1 and Theorem 2 can be found in the following two sections.

Lemma 1 and Lemma 2 essentially say that given enough samples, solving the corresponding con-
strained logistic regression problem will provide a prediction σ(〈ŵ, x〉) close to the true σ(〈w∗, x〉)
in terms of their expected squared distance.
Lemma 1. Let D be a distribution on {−1, 1}n × {−1, 1} where for (X,Y ) ∼ D, P[Y = 1|X =
x] = σ(〈w∗, x〉). We assume that ‖w∗‖1 ≤ 2λ for a known λ ≥ 0. Given N i.i.d. samples
{(xi, yi)}Ni=1, let ŵ be any minimizer of the following `1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (7)

Given ρ ∈ (0, 1) and ε > 0, suppose that N = O(λ2(ln(n/ρ))/ε2), then with probability at least
1− ρ over the samples, we have that E(x,y)∼D[(σ(〈w∗, x〉)− σ(〈ŵ, x〉))2] ≤ ε.
Lemma 2. Let D be a distribution on X × {−1, 1}, where X = {x ∈ {0, 1}n×k : ‖x‖2,∞ ≤ 1}.
Furthermore, (X,Y ) ∼ D satisfies P[Y = 1|X = x] = σ(〈w∗, x〉), where w∗ ∈ Rn×k. We assume
that ‖w∗‖2,1 ≤ 2λ

√
k for a known λ ≥ 0. Given N i.i.d. samples {(xi, yi)}Ni=1 from D, let ŵ be

any minimizer of the following `2,1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn×k

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤ 2λ

√
k. (8)
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Algorithm 2 Learning discrete pairwise graphical models via `2,1-constrained logistic regression

Input: alphabet size k; N i.i.d. samples {z1, · · · , zN}, where zm ∈ [k]n for m ∈ [N ]; an upper
bound on λ(W,Θ) ≤ λ; a lower bound on η(W,Θ) ≥ η > 0.
Output: Ŵij ∈ Rk×k for all i 6= j ∈ [n]; an undirected graph Ĝ on n nodes.

1: for each node i ∈ [n] do
2: for each pair α 6= β ∈ [k] do
3: S ← {zm,m ∈ [N ] : zmi ∈ {α, β}} . Extract samples where zi takes value α or β.
4: for zt ∈ S, t = 1, ..., |S| do
5: xt ← OneHotEncode([zt−i, 1]), . Map each entry into a standard basis vector.

6: yt ←
{

1 if zti = α

−1 if zti = β
. Form samples (xt, yt) ∈ {0, 1}n×k × {−1, 1}.

7: end for
8: Solve the convex program: . Any minimizer works if there are more than one.

9:
wα,β ← arg min

w∈Rn×k

1

|S|

|S|∑
t=1

ln(1 + e−y
t〈w,xt〉)

s.t. ‖w‖2,1 ≤ 2λ
√
k

10: Define matrix Uα,β ∈ Rn×k by centering the first n− 1 rows of wα,β :
11: Uα,β(j, :)← wα,β(j, :)− 1

k

∑
a∈[k] w

α,β(j, a) for j ∈ [n− 1]

12: Uα,β(n, :)← wα,β(n, :) + 1
k

∑
j∈[n−1],a∈[k] w

α,β(j, a)

13: end for
14: for j ∈ [n]\i and α ∈ [k] do
15: Ŵij(α, :) = 1

k

∑
β∈[k] U

α,β(j̃, :), where j̃ = j if j < i and j̃ = j − 1 if j > i.
16: end for
17: for j ∈ [n]\i do
18: Add the edge (i, j) into the graph Ĝ if maxa,b Ŵij(a, b) ≥ η/2.
19: end for
20: end for

Given ρ ∈ (0, 1) and ε > 0, suppose that N = O(λ2k(ln(n/ρ))/ε2), then with probability at least
1− ρ over the samples, we have that E(x,y)∼D[(σ(〈w∗, x〉)− σ(〈ŵ, x〉))2] ≤ ε.

The proofs of Lemma 1 and Lemma 2 are given in Appendix F. Note that in the setup of both lemmas,
we form a pair of dual norms for x and w, e.g., ‖x‖2,∞ and ‖w‖2,1 in Lemma 2, and ‖x‖∞ and ‖w‖1
in Lemma 1. This duality allows us to use a sharp generalization bound with a sample complexity
that scales logarithmic in the dimension.

Intuitively, if a variable in a graphical model distribution concentrates on a subset of the alphabet
(e.g., it always takes the same value in an Ising model distribution), then it is difficult to infer the
exact relation between this variable and other variables. One key property of the graphical model
distribution is that this bad event cannot happen. The (conditional) probability that a variable takes
any value in the alphabet is lowered bounded by a nonzero quantity (see Definition 3 and Lemma 4).

Definition 3. Let S be the alphabet set, e.g., S = {−1, 1} for Ising model and S = [k] for an
alphabet of size k. A distribution D on Sn is δ-unbiased if for X ∼ D, any i ∈ [n], and any
assignment x ∈ Sn−1 to X−i, minα∈S(P[Xi = α|X−i = x]) ≥ δ.

For a δ-unbiased distribution, any of its marginal distribution is also δ-unbiased, as indicated by the
following lemma.

Lemma 3. Let D be a δ-unbiased distribution on Sn, where S is the alphabet set. For X ∼ D, any
i ∈ [n], the distribution of X−i is also δ-unbiased.

Lemma 4 describes the δ-unbiased property of MRFs. This property has been used in the previous
papers (e.g., [KM17, Bre15]). For completeness, we also give a proof of Lemma 4 in Appendix G.
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Lemma 4. Let D(W,Θ) be a pairwise graphical model distribution with alphabet size k and
width λ(W,Θ). Then D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k. Specifically, an Ising model
distribution D(A, θ) is e−2λ(A,θ)/2-unbiased.

Recall that Lemma 1 and Lemma 2 give a sample complexity bound for achieving a small `2 error
between σ(〈ŵ, x〉) and σ(〈w∗, x〉). We still need to show that ŵ is close to w∗. The following two
lemmas provide a connection between the `2 error and ‖ŵ − w∗‖∞.
Lemma 5. Let D be a δ-unbiased distribution on {−1, 1}n. Suppose that for two vectors u,w ∈ Rn
and θ′, θ′′ ∈ R, EX∼D[(σ(〈w,X〉 + θ′) − σ(〈u,X〉 + θ′′))2] ≤ ε, where ε < δe−2‖w‖1−2|θ′|−6.
Then ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·

√
ε/δ.

Lemma 6. LetD be a δ-unbiased distribution on [k]n. ForX ∼ D, let X̃ ∈ {0, 1}n×k be the one-hot
encoded X . Let u,w ∈ Rn×k be two matrices satisfying

∑
a u(i, a) = 0 and

∑
a w(i, a) = 0, for

i ∈ [n]. Suppose that for some u,w and θ′, θ′′ ∈ R, we have EX∼D[(σ(
〈
w, X̃

〉
+ θ′)−σ(

〈
u, X̃

〉
+

θ′′))2] ≤ ε, where ε < δe−2‖w‖∞,1−2|θ′|−6. Then1 ‖w − u‖∞ ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

The proofs of Lemma 5 and Lemma 6 can be found in [KM17] (see Claim 8.6 and Lemma 4.3 in the
arxiv version of their paper). We give a slightly different proof of these two lemmas in Appendix I.

D Proof of Theorem 1

We first restate Theorem 1 and then give the proof.
Theorem. Let D(A, θ) be an unknown n-variable Ising model distribution with dependency graph
G. Suppose that the D(A, θ) has width λ(A, θ) ≤ λ. Given ρ ∈ (0, 1) and ε > 0, if the number
of i.i.d. samples satisfies N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability at least 1 − ρ,
Algorithm 1 produces Â that satisfies

max
i,j∈[n]

|Aij − Âij | ≤ ε. (9)

Proof. For simplicity, we focus on the n-th variable, and will show that Algorithm 1 is able to recover
the n-th row of the true weight matrix A. Specifically, we will show that if the number samples
satisfies N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability as least 1− ρ/n,

max
j∈[n]

|Anj − Ânj | ≤ ε. (10)

The proof directly extends to other variables. We can then use a union bound to conclude that with
probability as least 1− ρ, maxi,j∈[n] |Aij − Âij | ≤ ε.

To show that Eq. (10) holds, let Z ∼ D(A, θ), X = (Z1, Z2, · · · , Zn−1, 1) ∈ {−1, 1}n, Y = Zn ∈
{−1, 1}, by Fact 1, we have that

P[Y = 1|X = x] = σ(〈w∗, x〉), where w∗ = 2(An1, An2, · · · , An(n−1), θn) ∈ Rn. (11)

In Algorithm 1, we form N samples {(xi, yi)}Ni=1 that satisfy Eq. (11). Furthermore, ‖w∗‖1 ≤
2λ(A, θ) ≤ 2λ, by the definition of model width. Then an `1-constrained logistic regression is solved
and the output is ŵ ∈ Rn.

By Lemma 1, if the number of samples satisfies N = O(λ2 ln(n/ρ)/γ2), then with probability at
least 1− ρ/n, we have

E
X

[(σ(〈w∗, X〉)− σ(〈ŵ,X〉))2] ≤ γ, (12)

where X = (Z−n, 1) = (Z1, Z2, · · · , Zn−1, 1) ∈ {−1, 1}n.

By Lemma 4, Z−n ∈ {−1, 1}n−1 is δ-unbiased (Definition 3) with δ = e−2λ/2. Applying Lemma 5
to Eq. (12) gives

‖w∗1:(n−1) − ŵ1:(n−1)‖∞ ≤ O(1) · e2λ ·
√
γ/δ (13)

1For a matrix w, we define ‖w‖∞ = maxij |w(i, j)|. Note that this definition is different from the induced
matrix norm.
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for γ < C1δe
−4λ for some constant C1 > 0. Given ε ∈ (0, 1), we now set γ = C2δe

−4λε2

for some constant C2 > 0. Note that w∗1:(n−1) = 2(An1, · · · , An(n−1)) and ŵ1:(n−1) =

2(Ân1, · · · , Ân(n−1)). Eq. (13) implies that

max
j∈[n]

|Anj − Ânj | ≤ ε. (14)

The number of samples needed is N = O(λ2 ln(n/ρ)/γ2) = O(λ2e12λ ln(n/ρ)/ε4).

We have shown that Eq. (10) holds with probability at least 1− ρ/n. Using a union bound over all n
variables gives that with probability as least 1− ρ, maxi,j∈[n] |Aij − Âij | ≤ ε.

E Proof of Theorem 2

Theorem 2 is restated below, followed by its proof.
Theorem. Let D(W,Θ) be an n-variable pairwise graphical model distribution with width
λ(W,Θ) ≤ λ and alphabet size k. Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. samples
satisfies N = O(λ2k4 exp(O(λ)) ln(nk/ρ)/ε4), then with probability at least 1 − ρ, Algorithm 2
produces Ŵij ∈ Rk×k that satisfies

|Wij(a, b)− Ŵij(a, b)| ≤ ε, ∀i 6= j ∈ [n], ∀a, b ∈ [k]. (15)

Proof. For simplicity, let us focus on the n-th variable (i.e., set i = n inside the first “for” loop of
Algorithm 2). The proof directly applies to other variables. We will prove the following result: if the
number of samples N = O(λ2k4 exp(O(λ)) ln(nk/ρ)/ε4), then with probability at least 1− ρ/n,
the Uα,β ∈ Rn×k matrices produced by Algorithm 2 satisfies

|Wnj(α, :)−Wnj(β, :)− Uα,β(j, :)| ≤ ε, ∀j ∈ [n− 1], ∀α, β ∈ [k]. (16)

Suppose that (16) holds, then summing over β ∈ [k] and using the fact that
∑
βWnj(β, :) = 0 gives

|Wnj(α, :)−
1

k

∑
β∈[k]

Uα,β(j, :)| ≤ ε, ∀j ∈ [n− 1], ∀α ∈ [k]. (17)

Since Ŵij(α, :) =
∑
β∈[k] U

α,β(j, :)/k, Theorem 2 then follows by taking a union bound over the n
variables.

The only thing left is to prove (16). Now fix a pair of α, β ∈ [k], let Nα,β be the number of samples
such that the n-th variable is either α or β. By Lemma 2 and Fact 2, if Nα,β = O(λ2k ln(n/ρ′)/γ2),
then with probability at least 1 − ρ′, the minimizer of the `2,1 constrained logistic regression
wα,β ∈ Rn×k satisfies

E
X

[(σ(〈w∗, X〉)− σ(
〈
wα,β , X

〉
))2] ≤ γ, (18)

where the random variable X ∈ {0, 1}n×k is the one-hot encoding of vector (Z−n, 1) ∈ [k]n for
Z ∼ D(W,Θ), and w∗ ∈ Rn×k satisfies

w∗(j, :) = Wnj(α, :)−Wnj(β, :), ∀j ∈ [n− 1];

w∗(n, :) = [θn(α)− θn(β), 0, · · · , 0].

Recall that Uα,β ∈ Rn×k is formed by centering the first n− 1 rows of wα,β . Because each row of
X is a standard basis vector (i.e., all 0’s except a single 1), we have

〈
Uα,β , X

〉
=
〈
wα,β , X

〉
. Hence,

(18) implies that
E
X

[(σ(〈w∗, X〉)− σ(
〈
Uα,β , X

〉
))2] ≤ γ. (19)

By Lemma 4 and Lemma 3, for Z ∼ D(W,Θ), Z−n is δ-unbiased with δ = e−2λ/k. By Lemma 6
and (19), if Nα,β = O(λ2k3 exp(O(λ)) ln(n/ρ′))/ε4), then with probability at least 1− ρ′,

|Wnj(α, :)−Wnj(β, :)− Uα,β(j, :)| ≤ ε, ∀j ∈ [n− 1]. (20)

So far we have proved that (16) holds for a fixed (α, β) pair. This requires that Nα,β =
O(λ2k3 exp(O(λ)) ln(n/ρ′))/ε4). Recall that Nα,β is the number of samples that the n-th variable
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takes α or β. We next derive the number of total samples needed in order to have Nα,β samples for
a given (α, β) pair. Since D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k, for Z ∼ D(W,Θ), we
have P[Zn ∈ {α, β}|Z−n] ≥ 2δ. By the Chernoff bound, if the total number of samples satisfies
N = O(Nα,β/δ + log(1/ρ′′)/δ), then with probability at least 1− ρ′′, we have Nα,β samples for a
given (α, β) pair.

To ensure that (20) holds for all (α, β) pairs with probability at least 1−ρ/n, we can set ρ′ = ρ/(nk2)
and ρ′′ = ρ/(nk2) and take a union bound over all (α, β) pairs. The total number of samples required
is N = O(λ2k4 exp(O(λ)) ln(nk/ρ)/ε4).

We have shown that (16) holds for the n-th variable with probability at least 1−ρ/n. By the discussion
at the beginning of the proof, Theorem 2 then follows by a union bound over the n variables.

F Proof of Lemma 1 and Lemma 2

The proof of Lemma 1 relies on the following lemmas. The first lemma is a generalization error
bound for any Lipschitz loss of linear functions with bounded `1-norm.

Lemma 7. Let D be a distribution on X × Y , where X = {x ∈ Rn : ‖x‖∞ ≤ X∞}, and
Y = {−1, 1}. Let ` : R→ R be a loss function with Lipschitz constant L`. Define the expected loss
L(w) and the empirical loss L̂(w) as

L(w) = E
(x,y)∼D

`(y 〈w, x〉), L̂(w) =
1

N

N∑
i=1

`(yi
〈
w, xi

〉
), (21)

where {xi, yi}Ni=1 are i.i.d. samples from distribution D. DefineW = {w ∈ Rn : ‖w‖1 ≤ W1}.
Then with probability at least 1− ρ over the samples, we have that for all w ∈ W ,

L(w) ≤ L̂(w) + 2L`X∞W1

√
2 ln(2n)

N
+ L`X∞W1

√
2 ln(2/ρ)

N
. (22)

Lemma 7 is essentially Theorem 26.15 of [SSBD14] (for the binary classification setup).

Lemma 8. Let DKL(a||b) := a ln(a/b) + (1 − a) ln((1 − a)/(1 − b)) denote the KL-divergence
between two Bernoulli distributions (a, 1− a), (b, 1− b) with a, b ∈ [0, 1]. Then

(a− b)2 ≤ 1

2
DKL(a||b). (23)

Lemma 8 is simply the Pinsker’s inequality applied to the binary distributions.

Lemma 9. Let D be a distribution on X × {−1, 1} where for (X,Y ) ∼ D, P[Y = 1|X = x] =
σ(〈w∗, x〉). Let L(w) be the expected logistic loss:

L(w) = E
(x,y)∼D

ln(1 + e−y〈w,x〉) = E
(x,y)∼D

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))].

(24)
Then for any w, we have

L(w)− L(w∗) = E
(x,y)∼D

[DKL(σ(〈w∗, x〉)||σ(〈w, x〉))], (25)

where DKL(a||b) := a ln(a/b) + (1− a) ln((1− a)/(1− b)) denotes the KL-divergence between
two Bernoulli distributions (a, 1− a), (b, 1− b) with a, b ∈ [0, 1], and σ(x) = 1/(1 + e−x) is the
sigmoid function.
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Proof. Simply plugging in the definition of the expected logistic loss L(·) gives

L(w)− L(w∗) = E
(x,y)∼D

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]

+ E
(x,y)∼D

[
y + 1

2
ln(σ(〈w∗, x〉)) +

1− y
2

ln(1− σ(〈w∗, x〉))]

= E
x
E
y|x

[−y + 1

2
ln(σ(〈w, x〉))− 1− y

2
ln(1− σ(〈w, x〉))]

+ E
x
E
y|x

[
y + 1

2
ln(σ(〈w∗, x〉)) +

1− y
2

ln(1− σ(〈w∗, x〉))]

(a)
= E

x
[−σ(〈w∗, x〉) ln(σ(〈w, x〉))− (1− σ(〈w∗, x〉)) ln(1− σ(〈w, x〉))]

+ E
x

[σ(〈w∗, x〉) ln(σ(〈w∗, x〉)) + (1− σ(〈w∗, x〉)) ln(1− σ(〈w∗, x〉))]

= E
x

[
σ(〈w∗, x〉) ln

(
σ(〈w∗, x〉)
σ(〈w, x〉)

)
+ (1− σ(〈w∗, x〉)) ln

(
1− σ(〈w∗, x〉)
1− σ(〈w, x〉)

)]
= E

(x,y)∼D
[DKL(σ(〈w∗, x〉)||σ(〈w, x〉))],

where (a) follows from the fact that

Ey|x[y] = 1 · P[y = 1|x] + (−1) · P[y = −1|x] = 2σ(〈w∗, x〉)− 1.

We are now ready to prove Lemma 1 (which is restated below):

Lemma. LetD be a distribution on {−1, 1}n×{−1, 1} where for (X,Y ) ∼ D, P[Y = 1|X = x] =
σ(〈w∗, x〉). We assume that ‖w∗‖1 ≤ 2λ for a known λ ≥ 0. Given N i.i.d. samples {(xi, yi)}Ni=1,
let ŵ be any minimizer of the following `1-constrained logistic regression problem:

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤ 2λ. (26)

Given ρ ∈ (0, 1) and ε > 0, suppose that N = O(λ2(ln(n/ρ))/ε2), then with probability at least
1− ρ over the samples, we have that E(x,y)∼D[(σ(〈w∗, x〉)− σ(〈ŵ, x〉))2] ≤ ε.

Proof. We first apply Lemma 7 to the setup of Lemma 1. The loss function `(z) = ln(1 + e−z)
defined above has Lipschitz constant L` = 1. The input sample x ∈ {−1, 1}n satisfies ‖x‖∞ ≤ 1.
LetW = {w ∈ Rn×k : ‖w‖1 ≤ 2λ}. According to Lemma 7, with probability at least 1− ρ/2 over
the draw of the training set, we have that for all w ∈ W ,

L(w)− L̂(w) ≤ 4λ

√
2 ln(2n)

N
+ 2λ

√
2 ln(4/ρ)

N
. (27)

where L(w) = E(x,y)∼D ln(1+e−y〈w,x〉) and L̂(w) =
∑N
i=1 ln(1+e−y

i〈w,xi〉)/N are the expected
loss and empirical loss.

Let N = C · λ2 ln(8n/ρ)/ε2 for a global constant C, then (27) implies that with probability at least
1− ρ/2,

L(w) ≤ L̂(w) + ε, for all w ∈ W. (28)

We next prove a concentration result for L̂(w∗). Here w∗ is the true regression vector and is assumed
to be fixed. Since ln(1 + e−y〈w

∗,x〉) is bounded for x ∈ X and w∗ ∈ W , Hoeffding’s inequality
gives that P[L̂(w∗)−L(w∗) ≥ t] ≤ e−2Nt2/(4λ)2 . Let N = C ′ ·λ2 ln(2/ρ)/ε2 for a global constant
C ′, then with probability at least 1− ρ/2 over the samples,

L̂(w∗) ≤ L(w∗) + ε. (29)
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Then the following holds with probability at least 1− ρ:

L(ŵ)
(a)

≤ L̂(ŵ) + ε
(b)

≤ L̂(w∗) + ε
(c)

≤ L(w∗) + 2ε, (30)

where (a) follows from (28), (b) follows from the fact ŵ is the minimizer of L̂(w), and (c) follows
from (29).

So far we have shown that L(ŵ) − L(w∗) ≤ 2ε with probability at least 1 − ρ. The last step is to
lower bound L(ŵ)− L(w∗) by E(x,y)∼D(σ(〈w∗, x〉)− σ(〈w, x〉))2 using Lemma 8 and Lemma 9.

E
(x,y)∼D

(σ(〈w∗, x〉)− σ(〈w, x〉))2
(d)

≤ E
(x,y)∼D

DKL(σ(〈w∗, x〉)||σ(〈w, x〉))/2

(e)
= (L(ŵ)− L(w∗))/2

(f)

≤ ε,

where (d) follows from Lemma 8, (e) follows from Lemma 9, and (f) follows from (30). Therefore,
we have that E(x,y)∼D(σ(〈w∗, x〉)− σ(〈w, x〉))2 ≤ ε with probability at least 1− ρ, if the number
of samples satisfies N = O(λ2 ln(n/ρ)/ε2).

The proof of Lemma 2 is identical to the proof of Lemma 1, except that it relies on the following
generalization error bound for Lipschitz loss functions with bounded `2,1-norm.

Lemma 10. Let D be a distribution on X × Y , where X = {x ∈ Rn×k : ‖x‖2,∞ ≤ X2,∞}, and
Y = {−1, 1}. Let ` : R→ R be a loss function with Lipschitz constant L`. Define the expected loss
L(w) and the empirical loss L̂(w) as

L(w) = E
(x,y)∼D

`(y 〈w, x〉), L̂(w) =
1

N

N∑
i=1

`(yi
〈
w, xi

〉
), (31)

where {xi, yi}Ni=1 are i.i.d. samples from distribution D. Define W = {w ∈ Rn×k : ‖w‖2,1 ≤
W2,1}. Then with probability at least 1− ρ over the draw of N samples, we have that for all w ∈ W ,

L(w) ≤ L̂(w) + 2L`X2,∞W2,1

√
6 ln(n)

N
+ L`X2,∞W2,1

√
2 ln(2/ρ)

N
. (32)

Lemma 10 can be readily derived from the existing results. First, notice that the dual norm of ‖·‖2,1 is
‖·‖2,∞. Using Corollary 14 in [KSST12], Theorem 1 in [KST09], and the fact that ‖w‖2,q ≤ ‖w‖2,1
for q ≥ 1, we conclude that the Rademacher complexity of the function class F := {x→ 〈w, x〉 :

‖w‖2,1 ≤W2,1} is at most X2,∞W2,1

√
6 ln(n)/N . We can then obtain the standard Rademacher-

based generalization bound (see, e.g., [BM02] and Theorem 26.5 in [SSBD14]) for bounded Lipschitz
loss functions.

We omit the proof of Lemma 2 since it is the same as that of Lemma 1.

G Proof of Lemma 3

Lemma 3 is restated below.

Lemma. Let D be a δ-unbiased distribution on Sn, where S is the alphabet set. For X ∼ D, any
i ∈ [n], the distribution of X−i is also δ-unbiased.
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Proof. For any j 6= i ∈ [n], any a ∈ S, and any x ∈ Sn−2, we have

P[Xj = a|X[n]\{i,j} = x] =
∑
b∈S

P[Xj = a,Xi = b|X[n]\{i,j} = x]

=
∑
b∈S

P[Xi = b|X[n]\{i,j} = x] · P[Xj = a|Xi = b,X[n]\{i,j} = x]

(a)

≤ δ
∑
b∈S

P[Xi = b|X[n]\{i,j} = x]

= δ, (33)

where (a) follows from the fact that X ∼ D and D is a δ-unbiased distribution. Since (33) holds
for any j 6= i ∈ [n], any a ∈ S, and any x ∈ Sn−2, by definition, the distribution of X−i is
δ-unbiased.

H Proof of Lemma 4

The lemma is restated below, followed by its proof.

Lemma. Let D(W,Θ) be a pairwise graphical model distribution with alphabet size k and width
λ(W,Θ). Then D(W,Θ) is δ-unbiased with δ = e−2λ(W,Θ)/k. Specifically, an Ising model
distribution D(A, θ) is e−2λ(A,θ)/2-unbiased.

Proof. Let X ∼ D(W,Θ), and assume that X ∈ [k]n. For any i ∈ [n], any a ∈ [k], and any
x ∈ [k]n−1, we have

P[Xi = a|X−i = x] =
exp(

∑
j 6=iWij(a, xj) + θi(a))∑

b∈[k] exp(
∑
j 6=iWij(b, xj) + θi(b))

=
1∑

b∈[k] exp(
∑
j 6=i(Wij(b, xj)−Wij(a, xj)) + θi(b)− θi(a))

(a)

≥ 1

k · exp(2λ(W,Θ))

= e−2λ(W,Θ)/k, (34)

where (a) follows from the definition of model width. The lemma then follows (Ising model
corresponds to the special case of k = 2).

I Proof of Lemma 5 and Lemma 6

The proof relies on the following basic property of the sigmoid function (see Claim 4.2 of [KM17]):

|σ(a)− σ(b)| ≥ e−|a|−3 ·min(1, |a− b|), ∀a, b ∈ R. (35)

We first prove Lemma 5 (which is restated below).

Lemma. Let D be a δ-unbiased distribution on {−1, 1}n. Suppose that for two vectors u,w ∈ Rn
and θ′, θ′′ ∈ R, EX∼D[(σ(〈w,X〉 + θ′) − σ(〈u,X〉 + θ′′))2] ≤ ε, where ε < δe−2‖w‖1−2|θ′|−6.
Then ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·

√
ε/δ.

Proof. For any i ∈ [n], any X ∈ {−1, 1}n, let Xi ∈ {−1, 1} be the i-th variable and X−i ∈
{−1, 1}n−1 be the [n]\{i} variables. Let Xi,+ ∈ {−1, 1}n (respectively Xi,−) be the vector
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obtained from X by setting Xi = 1 (respectively Xi = −1). Then we have

ε ≥ E
X∼D

[(σ(〈w,X〉+ θ′)− σ(〈u,X〉+ θ′′))2]

= E
X−i

[
E

Xi|X−i

(σ(〈w,X〉+ θ′)− σ(〈u,X〉+ θ′′))2

]
= E
X−i

[(σ(
〈
w,Xi,+

〉
+ θ′)− σ(

〈
u,Xi,+

〉
+ θ′′))2 · P[Xi = 1|X−i]

+ (σ(
〈
w,Xi,−〉+ θ′)− σ(

〈
u,Xi,−〉+ θ′′))2 · P[Xi = −1|X−i]]

(a)

≥ δ · E
X−i

[(σ(
〈
w,Xi,+

〉
+ θ′)− σ(

〈
u,Xi,+

〉
+ θ′′))2

+ (σ(
〈
w,Xi,−〉+ θ′)− σ(

〈
u,Xi,−〉+ θ′′))2]

(b)

≥ δe−2‖w‖1−2|θ′|−6 · E
X−i

[min(1, ((
〈
w,Xi,+

〉
+ θ′)− (

〈
u,Xi,+

〉
+ θ′′))2)

+ min(1, ((
〈
w,Xi,−〉+ θ′)− (

〈
u,Xi,−〉+ θ′′))2)]

(c)

≥ δe−2‖w‖1−2|θ′|−6 · E
X−i

min(1, (2wi − 2ui)
2/2)

(d)
= δe−2‖w‖1−2|θ′|−6 ·min(1, 2(wi − ui)2). (36)

Here (a) follows from the fact that D is a δ-unbiased distribution, which implies that P[Xi =
1|X−i] ≥ δ and P[Xi = −1|X−i] ≥ δ. Inequality (b) is obtained by substituting (35). Inequality (c)
uses the following fact

min(1, a2) + min(1, b2) ≥ min(1, (a− b)2/2),∀a, b ∈ R. (37)

To see why (37) holds, note that if both |a|, |b| ≤ 1, then (37) is true since a2 + b2 ≥ (a − b)2/2.
Otherwise, (37) is true because the left-hand side is at least 1 while the right-hand side is at most 1.
The last equality (d) follows from that X−i is independent of min(1, 2(wi − ui)2).

Since ε < δe−2‖w‖1−2|θ′|−6, (36) implies that |wi − ui| ≤ O(1) · e‖w‖1+|θ′| ·
√
ε/δ. Because (36)

holds for any i ∈ [n], we have that ‖w − u‖∞ ≤ O(1) · e‖w‖1+|θ′| ·
√
ε/δ.

We now prove Lemma 6 (which is restated below).

Lemma. Let D be a δ-unbiased distribution on [k]n. For X ∼ D, let X̃ ∈ {0, 1}n×k be the one-hot
encoded X . Let u,w ∈ Rn×k be two matrices satisfying

∑
j u(i, j) = 0 and

∑
j w(i, j) = 0, for

i ∈ [n]. Suppose that for some u,w and θ′, θ′′ ∈ R, we have EX∼D[(σ(
〈
w, X̃

〉
+ θ′)−σ(

〈
u, X̃

〉
+

θ′′))2] ≤ ε, where ε < δe−2‖w‖∞,1−2|θ′|−6. Then ‖w − u‖∞ ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

Proof. Fix an i ∈ [n] and a 6= b ∈ [k]. Let Xi,a ∈ [k]n (respectively Xi,b) be the vector obtained
from X by setting Xi = a (respectively Xi = b). Let X̃i,a ∈ {0, 1}n×k be the one-hot encoding of
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Xi,a ∈ [k]n. Then we have

ε ≥ E
X∼D

[(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2]

= E
X−i

[
E

Xi|X−i

(σ(
〈
w, X̃

〉
+ θ′)− σ(

〈
u, X̃

〉
+ θ′′))2

]
≥ E
X−i

[(σ(
〈
w, X̃i,a

〉
+ θ′)− σ(

〈
u, X̃i,a

〉
+ θ′′))2 · P[Xi = a|X−i]

+ (σ(
〈
w, X̃i,b

〉
+ θ′)− σ(

〈
u, X̃i,b

〉
+ θ′′))2 · P[Xi = b|X−i]]

(a)

≥ δe−2‖w‖∞,1−2|θ′|−6 · E
X−i

[min(1, ((
〈
w, X̃i,a

〉
+ θ′)− (

〈
u, X̃i,a

〉
+ θ′′))2)

+ min(1, ((
〈
w, X̃i,b

〉
+ θ′)− (

〈
u, X̃i,b

〉
+ θ′′))2)]

(b)

≥ δe−2‖w‖∞,1−2|θ′|−6 · E
X−i

min(1, ((w(i, a)− w(i, b))− (u(i, a)− u(i, b)))2/2)

= δe−2‖w‖∞,1−2|θ′|−6 min(1, ((w(i, a)− w(i, b))− (u(i, a)− u(i, b)))2/2) (38)
Here (a) follows from that D is a δ-unbiased distribution and (35). Inequality (b) follows from (37).
Because ε < δe−2‖w‖∞,1−2|θ′|−6, (38) implies that

(w(i, a)− w(i, b))− (u(i, a)− u(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ. (39)

(u(i, a)− u(i, b))− (w(i, a)− w(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ. (40)

Since (39) and (40) hold for any a 6= b ∈ [k], we can sum over b ∈ [k] and use the fact that∑
j u(i, j) = 0 and

∑
j w(i, j) = 0 to get

w(i, a)− u(i, a) =
1

k

∑
b

(w(i, a)− w(i, b))− (u(i, a)− u(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

u(i, a)− w(i, a) =
1

k

∑
b

(u(i, a)− u(i, b))− (w(i, a)− w(i, b)) ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ.

Therefore, we have |w(i, a)−u(i, a)| ≤ O(1) · e‖w‖∞,1+|θ′| ·
√
ε/δ, for any i ∈ [n] and a ∈ [k].

J Learning pairwise graphical models in Õ(n2) time

Our results so far assume that the `1-constrained logistic regression (in Algorithm 1) and the `2,1-
constrained logistic regression (in Algorithm 2) can be solved exactly. This would require Õ(n4)
complexity if an interior-point based method is used [KKB07]. The goal of this section is to reduce the
runtime to Õ(n2) via first-order optimization method. Note that Õ(n2) is an efficient time complexity
for graph recovery over n nodes. Previous structural learning algorithms of Ising models require
either Õ(n2) complexity (e.g., [Bre15, KM17]) or a worse complexity (e.g., [RWL10, VMLC16]
require Õ(n4) runtime2). We would like to remark that our goal of this section is not to give the fastest
first-order optimization algorithm (see the discussion after Theorem 4). Instead, our contribution here
is to provably show that it is possible to run Algorithm 1 and Algorithm 2 in Õ(n2) time without
affecting the original statistical guarantees.

To better exploit the problem structure3, we use the mirror descent algorithm4 with a properly chosen
distance generating function (aka the mirror map). Following the standard mirror descent setup, we

2It is possible to apply the proposed mirror descent algorithm to optimize the convex program given
in [VMLC16]. However, it is unclear how to incorporate the convergence result shown in (41) into their original
proof to show that w̄ still gives the same statistical guarantee.

3Specifically, for the `1-constrained logisitic regression defined in (3), since the input sample satisifies
‖x‖∞ = 1, the loss function is O(1)-Lipschitz w.r.t. ‖·‖1. Similarly, for the `2,1-constrained logisitic regression
defined in (6), the loss function is O(1)-Lipschitz w.r.t. ‖·‖2,1 because the input sample satisifies ‖x‖2,∞ = 1.

4Other approaches include the standard projected gradient descent and the coordinate descent. Their
convergence rates depend on either the smoothness or the Lipschitz constant (w.r.t. ‖·‖2) of the objective
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use negative entropy as the mirror map for `1-constrained logistic regression and a scaled group norm
for `2,1-constrained logistic regression (see Section 5.3.3.2 and Section 5.3.3.3 in [BTN13] for more
details). The pseudocode is given in Appendix K. The main advantage of mirror descent algorithm is
that its convergence rate scales logarithmically in the dimension. Specifically, let w̄ be the output
after O(ln(n)/γ2) mirror descent iterations, then w̄ satisfies

L̂(w̄)− L̂(ŵ) ≤ γ, (41)

where L̂(w) =
∑N
i=1 ln(1 + e−y

i〈w,xi〉)/N is the empirical logistic loss, and ŵ is the actual
minimizer of L̂(w). Since each mirror descent update requires O(n) time, and we have to solve O(n)

regression problems for n variables, the total runtime scales as Õ(n2).

There is still one problem left, that is, we have to show that ‖w̄ − w∗‖∞ ≤ ε (where w∗ is the
minimizer of the true loss L(w) = E(x,y)∼D ln(1 + e−y〈w,x〉)) in order to prove Theorem 3 and
Theorem 4 with mirror descent algorithms. Since L̂(w) is not strongly convex, (41) alone does not
necessarily imply that ‖w̄ − ŵ‖∞ is small. Fortunately, we note that in the proof of Theorem 1 and
Theorem 2, the definition of ŵ (as a minimizer of L̂(w)) is only used to show that L̂(ŵ) ≤ L̂(w∗). It
is then possible to replace it with (41) in the original proof, and prove that Theorem 1 and Theorem 2
still hold as long as γ is small enough.

Our key result in this section is Theorem 3 and Theorem 4, which says that Algorithm 1 and
Algorithm 2 can be used to recover the dependency graph in Õ(n2) time.

Theorem 3. In the setup of Theorem 1, suppose that the `1-constrained logistic regression in
Algorithm 1 is optimized using the mirror descent algorithm given in Appendix K. Given ρ ∈ (0, 1)
and ε > 0, if the number of mirror descent iterations satisfies T = O(λ2 exp(O(λ)) ln(n)/ε4, and
the number of i.i.d. samples satisfies N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability at
least 1− ρ, maxi,j∈[n] |Aij − Âij | ≤ ε. The total time complexity of Algorithm 1 is O(TNn2).

Theorem 4. In the setup of Theorem 2, suppose that the `2,1-constrained logistic regression in
Algorithm 2 is optimized using the mirror descent algorithm given in Appendix K. Given ρ ∈ (0, 1)
and ε > 0, if the number of mirror descent iterations satisfies T = O(λ2k3 exp(O(λ)) ln(n)/ε4, and
the number of i.i.d. samples satisfiesN = O(λ2k4 exp(O(λ)) ln(nk/ρ)/ε4), then with probability at
least 1− ρ, |Wij(a, b)− Ŵij(a, b)| ≤ ε, for all i 6= j ∈ [n] and a, b ∈ [k]. The total time complexity
of Algorithm 2 is O(TNn2k2).

Remark. The proposed algorithms can be easily parallelized since the logistic regression is defined
separately for each variable. Besides, it is possible to improve the time complexity given in Theorem 1
and Theorem 2 (especially the dependence of ε and λ), by using stochastic or accelerated versions of
mirror descent algorithms (instead of the batch version given in Appendix K). For example, if online
mirror descent algorithms are used, then the runtime would be O(Nn2) and O(Nn2k2) simply
because each mirror descent update uses a single sample instead of all samples (and the number
of updates equals the number of samples). In fact, the Sparsitron algorithm proposed by Klivans
and Meka [KM17] can be seen as an online mirror descent algorithm for optimizing `1-constrained
logistic regression (see Algorithm 3 given in Appendix K). As pointed out at the beginning of this
section, our goal here is not to give the most efficient optimization algorithm. The focus of this
section is to show that it is possible to run Algorithm 1 and Algorithm 2 in Õ(n2) time and achieve
the same statistical guarantee.

K Mirror descent algorithms for constrained logistic regression

Algorithm 3 gives a mirror descent algorithm for the following `1-constrained logistic regression:

min
w∈Rn

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖1 ≤W1. (42)

function [Bub15]. This would lead to a total runtime of Õ(n3) for our problem setting. Another option would
be the composite gradient descent method, the analysis of which relies on the restriced strong convexity of the
objective function [ANW10]. For other variants of mirror descent algorithms, see the remark after Theorem 4.
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Algorithm 3 Mirror descent algorithm for `1-constrained logistic regression
Input: {(xi, yi)}Ni=1 where xi ∈ {−1, 1}n, yi ∈ {−1, 1}; constraint on the `1 norm W1 ∈ R+;
number of iterations T .
Output: w̄ ∈ Rn.

1: for each sample i ∈ [N ] do
2: x̂i ← (xi,−xi, 0) ·W1, ŷi ← (yi + 1)/2 . Form samples (x̂i, ŷi) ∈ R2n+1 × {0, 1}.
3: end for
4: w1 ← ( 1

2n+1 ,
1

2n+1 , · · · ,
1

2n+1 ) ∈ R2n+1 . Initialize w as the uniform distribution.

5: γ ← 1
2W1

√
2 ln(2n+1)

T . Set the step size.
6: for each iteration t ∈ [T ] do
7: gt ← 1

N

∑N
i=1(σ(

〈
wt, x̂i

〉
)− ŷi)x̂i . Compute the gradient.

8: wt+1
i ← wti exp(−γgti), for i ∈ [2n+ 1] . Coordinate-wise update.

9: wt+1 ← wt+1/‖wt+1‖1 . Projection step.
10: end for
11: w̄ ←

∑T
t=1 w

t/T . Aggregate the updates.
12: w̄ ← (w̄1:n − w̄(n+1):2n) ·W1 . Transform w̄ back to Rn and the actual scale.

We use the doubling trick to expand the dimension and re-scale the samples (Step 1-4). Now the
original problem becomes a logistic regression problem over a probability simplex: ∆2n+1 = {w ∈
R2n+1 :

∑2n+1
i=1 wi = 1, wi ≥ 0,∀i ∈ [2n+ 1]}.

min
w∈∆2n+1

1

N

N∑
i=1

−ŷi ln(σ(
〈
w, x̂i

〉
))− (1− ŷi) ln(1− σ(

〈
w, x̂i

〉
)), (43)

where (x̂i, ŷi) ∈ R2n+1 × {0, 1}. In Step 4-11, we follow the standard simplex setup for mirror
descent algorithm (see Section 5.3.3.2 of [BTN13]). Specifically, the negative entropy is used as the
distance generating function (aka the mirror map). The projection step (Step 9) can be done by a
simple `1 normalization operation. After that, we transform the solution back to the original space
(Step 12).

Algorithm 4 gives a mirror descent algorithm for the following `2,1-constrained logistic regression:

min
w∈Rn×k

1

N

N∑
i=1

ln(1 + e−y
i〈w,xi〉) s.t. ‖w‖2,1 ≤W2,1. (44)

For simplicity, we assume that n ≥ 35. We then follow Section 5.3.3.3 of [BTN13] to use the
following function as the mirror map Φ : Rn×k → R:

Φ(w) =
e ln(n)

p
‖w‖p2,p, p = 1 + 1/ ln(n). (45)

The update step (Step 8) can be computed efficiently in O(nk) time, see the discussion in Section
5.3.3.3 of [BTN13] for more details.

L Proof of Theorem 3 and Theorem 4

The proof relies on the following convergence result of the mirror descent algorithms given in
Appendix K.

Lemma 11. Let L̂(w) = 1
N

∑N
i=1 ln(1 + e−y

i〈w,xi〉) be the empirical loss. Let ŵ be a minimizer of
the ERM defined in (42). The output w̄ of Algorithm 3 satisfies

L̂(w̄)− L̂(ŵ) ≤ 2W1

√
2 ln(2n+ 1)

T
. (46)

5For n ≤ 2, we need to switch to a different mirror map, see Section 5.3.3.3 of [BTN13] for more details.
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Algorithm 4 Mirror descent algorithm for `2,1-constrained logistic regression

Input: {(xi, yi)}Ni=1 where xi ∈ {0, 1}n×k, yi ∈ {−1, 1}; constraint on the `2,1 norm W2,1 ∈ R+;
number of iterations T .
Output: w̄ ∈ Rn×k.

1: for each sample i ∈ [N ] do
2: x̂i ← xi ·W2,1, ŷi ← (yi + 1)/2 . Form samples (x̂i, ŷi) ∈ Rn×k × {0, 1}.
3: end for
4: w1 ← ( 1

n
√
k
, 1
n
√
k
, · · · , 1

n
√
k

) ∈ Rn×k . Initialize w as a constant matrix.

5: γ ← 1
2W2,1

√
2e ln(n)

T . Set the step size.
6: for each iteration t ∈ [T ] do
7: gt ← 1

N

∑N
i=1(σ(

〈
wt, x̂i

〉
)− ŷi)x̂i . Compute the gradient.

8: wt+1 ← arg min‖w‖2,1≤1 Φ(w)− 〈∇Φ(wt)− γgt, w〉 . Φ(w) is defined in (45).
9: end for

10: w̄ ← (
∑T
t=1 w

t/T ) ·W21 . Aggregate the updates.

Similarly, let ŵ be a minimizer of the ERM defined in (44). Then the output w̄ of Algorithm 4 satisfies

L̂(w̄)− L̂(ŵ) ≤ O(1) ·W2,1

√
ln(n)

T
. (47)

Lemma 11 follows from the standard convergence result for mirror descent algorithm (see, e.g.,
Theorem 4.2 of [Bub15]), and the fact that the gradient gt in Step 7 of Algorithm 3 satisfies ‖gt‖∞ ≤
2W1 (reps. the gradient gt in Step 7 of Algorithm 4 satisfies ‖gt‖∞ ≤ 2W2,1). This implies that the
objective function after rescaling the samples is 2W1-Lipschitz w.r.t. ‖·‖1 (reps. 2W2,1-Lipschitz
w.r.t. ‖·‖2,1).

We are ready to prove Theorem 3, which is restated below.
Theorem. In the setup of Theorem 1, suppose that the `1-constrained logistic regression in Algo-
rithm 1 is optimized using the mirror descent algorithm given in Appendix K. Given ρ ∈ (0, 1) and
ε > 0, if the number of mirror descent iterations satisfies T = O(λ2 exp(O(λ)) ln(n)/ε4, and the
number of i.i.d. samples satisfies N = O(λ2 exp(O(λ)) ln(n/ρ)/ε4), then with probability at least
1− ρ, maxi,j∈[n] |Aij − Âij | ≤ ε. The total run-time of Algorithm 1 is O(TNn2).

Proof. We first note that in the proof of Theorem 1, we only use ŵ in order to apply the result from
Lemma 1. In the proof of Lemma 1, there is only one place where we use the definition of ŵ: the
inequality (b) in (30). As a result, if we can show that (30) still holds after replacing ŵ by w̄, i.e.,

L(w̄) ≤ L(w∗) +O(γ), (48)

then Lemma 1 would still hold, and so is Theorem 1.

By Lemma 11, if the number of iterations T = O(W 2
1 ln(n)/γ2), then

L̂(w̄)− L̂(ŵ) ≤ γ. (49)

As a result, we have

L(w̄)
(a)

≤ L̂(w̄) + γ
(b)

≤ L̂(ŵ) + 2γ
(c)

≤ L̂(w∗) + 2γ
(d)

≤ L(w∗) + 3γ, (50)

where (a) follows from (28), (b) follows from (49), (c) follows from the fact that ŵ is the minimizer of
L̂(w), and (d) follows from (29). The number of mirror descent iterations needed for (48) to hold is
T = O(W 2

1 ln(n)/γ2). In the proof of Theorem 1, we need to set γ = O(1)ε2δ exp(λ) (see the proof
following (13)), so the number of mirror descent iterations needed is T = O(λ2 exp(O(λ)) ln(n)/ε4.

To analyze the runtime of Algorithm 1, note that for each variable in [n], Step 3 takes O(Nn) time,
Step 6 takes O(TNn) time to run Algorithm 3, and Step 8 takes O(n) time. Forming the graph Ĝ
over n nodes takes O(n2) time. The total runtime is O(TNn2).
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The proof of Theorem 4 is identical to that of Theorem 3 and is omitted here. The key step is to
show that (48) holds after replacing ŵ by w̄. This can be done by using the convergence result in
Lemma 11 and applying the same logic in (50). The runtime of Algorithm 2 can be analyzed in the
same way as above. The `2,1-constrained logistic regression dominates the total runtime. It requires
O(TNα,βnk) time for each pair (α, β) and each variable in [n], where Nα,β is the subset of samples
that a given variable takes either α or β. Since N = O(kNα,β), the total runtime is O(TNn2k2).

M Experiments

Learning Ising models. In Figure 1 we construct a diamond-shape graph (see the left plot) and show
that the incoherence value at Node 1 becomes bigger than 1 (and hence violates the incoherence
condition in [RWL10]) as we increase the graph size n and edge weight a (see the middle plot). We
then run 100 times of Algorithm 1 and plot the fraction of successful runs. In each run we generate
a different set of samples (sampling is done via exactly computing the distribution). The right plot
shows that `1-constrained logistic regression can recover the graph structure as long as given enough
samples. This verifies our analysis and also indicates that our conditions for graph recovery are
weaker than those in [RWL10].
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Figure 1: Left: The graph structure used in this simulation. It has n nodes and 2(n− 2) edges. Every
edge has the same weight a > 0. The mean-field is zero. Middle: Incoherence value at Node 1. It
violates the incoherence condition in [RWL10] (i.e., becomes larger than 1) when we increase the
graph size n and edge weight a. Right: We simulate 100 runs of Algorithm 1 for the graph with edge
weight a = 0.2. The input parameters are λ = 0.2(n− 2), η = 0.2.

Learning discrete pairwise graphical models over general alphabet. We compare our algorithm
(Algorithm 2) with the Sparsitron algorithm in [KM17] on a two-dimensional 3-by-3 grid (shown
in Figure 2). We experiment three alphabet sizes: k = 2, 4, 6. For each value of k, we simulate
both algorithms 100 runs, and in each run we generate the Wij matrices with entries ±0.2. To
ensure that each row (as well as each column) of Wij is centered (i.e., zero mean), we will ran-
domly choose Wij between two options: as an example of k = 2, Wij = [0.2,−0.2;−0.2, 0.2]
or Wij = [−0.2, 0.2; 0.2,−0.2]. The mean-field is zero. Sampling is done via exactly computing
the distribution. The Sparsitron algorithm [KM17] requires two sets of samples: 1) to learn a set
of candidate weights; 2) to select the best candidate. We use max{200, 0.01 ·N} samples for the
second part. We plot the estimation error maxij‖Wij − Ŵij‖∞ and the fraction of successful runs
(i.e., runs that exactly recover the graph) in Figure 3. Compared to the Sparsitron algorithm [KM17],
our algorithm requires fewer samples for successfully recovering the graphs.
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Figure 2: A two-dimensional 3-by-3 grid graph used in the simulation.

21



2000 4000 6000 8000
0.05

0.1

0.15
Alphabet size ( k) = 2

Our method
[KM17]

2000 4000 6000 8000
0

0.5

1

Pr
ob

 s
uc

c 
in

 1
00

 ru
ns

Our method
[KM17]

4000 6000 8000 10000
Number of samples ( N)

0.1

0.15

0.2
k = 4

Our method
[KM17]

4000 6000 8000 10000
Number of samples ( N)

0.6

0.8

1

Our method
[KM17]

2 4 6
104

0.1

0.15

0.2
k = 6

Our method
[KM17]

2 4 6
104

0.4

0.6

0.8

1

Our method
[KM17]

Figure 3: Comparison of our algorithm and the Sparsitron algorithm in [KM17] on a two-dimensional
3-by-3 grid. Top row shows the average of the estimation error maxij‖Wij − Ŵij‖∞. Bottom
row plots the faction of successful runs (i.e., runs that exactly recover the graph). Each column
corresponds to an alphabet size: k = 2, 4, 6. Our algorithm needs fewer samples than the Sparsitron
algorithm for graph recovery.
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