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Abstract

In this paper we present Rescaled JL, a new data-oblivious dimension reduction scheme that
can potentially better preserve pairwise geometry. The key idea is based on a novel observation
that removing norm distortions is much easier than removing distortions from angles. We
prove high probability bounds for Rescaled JL in terms of pairwise Euclidean distances and dot
products. We also demonstrate the practical gains of Rescaled JL over standard JL through
simulations.

∗This is course project for 2016 Fall UT-Austin graduate course CS 395T Sublinear Algorithm.



1 Introduction

Dimensionality-reducing maps are widely used as a pre-processing step in modern large-scale ma-
chine learning applications. They transform high-dimensional data to a low-dimensional space while
preserving certain geometric quantities (e.g., pairwise distance, subspace, etc.) of the original data.
Compared to directly analyzing the original data, mining the transformed low-dimensional data has
the benefit of small storage consumption and fast runtime. A powerful technique for generating
data-oblivious1 dimensionality reduction maps is the Johnson-Lindenstrauss (JL) lemma [JL84].

Theorem 1.1 (JL lemma [JL84]). For any subset X ⊂ Rd of size n, and any ε ∈ (0, 1/2), there
exists a map f : X → Rm with m = O(log n/ε2) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖
2
2 ≤ (1 + ε)‖x− y‖22

Most data-oblivious dimensionality reduction maps considered in the literature are linear maps,
i.e., f(x) := Gx, where G ∈ Rm×d is a random matrix drawn from certain distribution. A simple
example is a random Gaussian matrix.

Theorem 1.2 (see, e.g., Theorem 2.1 in [Woo14]). Let G ∈ Rm×d, where each entry of G is drawn
independently from N(0, 1/m) Gaussian distribution. For any subset X ⊂ Rd of size n, and any
ε, δ ∈ (0, 1/2), if m = O( 1

ε2
log n

δ ), then with probability at least 1− δ, ∀x, y ∈ X we have

〈x, y〉 − ε‖x‖2‖y‖2 ≤ 〈Gx,Gy〉 ≤ 〈x, y〉+ ε‖x‖2‖y‖2.

(1− ε)‖x− y‖22 ≤ ‖Gx−Gy‖
2
2 ≤ (1 + ε)‖x− y‖22,

In this project we consider a new nonlinear data-oblivious dimensionality reduction map called
Rescaled JL embedding.

Definition 1.3. Let G ∈ Rm×d, where each entry of G is drawn independently from a N(0, 1/m)
Gaussian distribution2. Then for any x ∈ Rd, we define the Rescaled JL embedding f : Rd → Rm as

f(x) :=
Gx

‖Gx‖2
‖x‖2. (1)

It is easy to check that ‖f(x)‖2 = ‖x‖2, i.e., the length of the vector is preserved after embedding,
which is done by a simple rescaling operation. The idea of rescaling is first proposed in our recent
paper [WBSD16], where we have empirically demonstrated the superior performance of rescaled JL
embedding over normal JL embedding for preserving inner products. However, we do not provide
theoretical justifications.

The goal of this course project is to advance our theoretical understanding of Rescaled JL
embedding. In Section 3, we present our main theorem and its proof. In Section 4, we present
experimental results using random Gaussian matrices and subsampled Hadamard matrices.

2 Notations

Let N+ denote the set of positive integers. For any n ∈ N+, let [n] denote the set {1, 2, · · · , n}. The
`2-norm of a vector x ∈ Rd is defined as ‖x‖2 =

(∑d
i=1 |xi|2

)1/2. Let F(d1, d2) be the F-distribution
with parameters d1 and d2. Let Beta(α, β) be the Beta-distribution with parameters α and β.

1By data-oblivious, we mean that the randomness of the map does not depend on the input data.
2Although we define the Rescaled JL embedding for random Gaussian matrices, the same idea also works for other

random matrices (see our experiments in Section 4).
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3 Main Result

We now present a high probability bound for Rescaled JL embedding, which is the main theorem
of this project. Note that we use the median trick here in order to obtain a high probability result.

Theorem 3.1. Define t independent Rescaled JL maps: for i ∈ [t], fi(x) = Gix
‖Gix‖2

‖x‖2, where each
entry of Gi ∈ Rk×d is drawn independently from a N(0, 1/k) Gaussian distribution. For any subset
X ⊂ Rd of size n, and any ε, δ ∈ (0, 1/2), if k = d 4

ε2
e and t = O(log n

δ ), then with probability at
least 1− δ, ∀x, y ∈ X we have

〈x, y〉 − p(θx,y)‖x‖2‖y‖2 ≤ median
i∈[t]

〈fi(x), fi(y)〉 ≤ 〈x, y〉+ p(θx,y)‖x‖2‖y‖2,

‖x− y‖22 − 2p(θx,y)‖x‖2‖y‖2 ≤ median
i∈[t]

‖fi(x)− fi(y)‖22 ≤ ‖x− y‖
2
2 + 2p(θx,y)‖x‖2‖y‖2,

where θx,y is the actual angle between x and y, i.e., 〈x, y〉 = ‖x‖2‖y‖2 cos θx,y.
The error term p(θ) is a function of θ ∈ [0, π], where ε(π/2) ≤ ε and ε(0) = ε(π) = 0. It is

defined as an expectation over two independent random variables:

p(θ) = 2
√

E
g,u

[γ2 − 2 cos θγ] + cos2 θ, (2)

where

g ∼ F(k, k),
u+ 1

2
∼ Beta(

k − 1

2
,
k − 1

2
), γ =

u sin θ +
√
g cos θ√

g cos2 θ + sin2 θ + 2u sin θ cos θ
√
g

Table 1 gives a comparison of the guarantees provided by Theorem 3.1 and Theorem 1.2. We see
that the output dimensions m and kt have the same dependence on O( 1

ε2
log n

δ ). A key difference is
that, JL lemma produces an additive error for inner product and a multiplicative error for squared
distance, while our Rescaled JL gives additive errors to both inner product and squared distance.

Table 1: A comparison of the guarantees provided by Standard JL and Rescaled JL.

Methods Standard JL Rescaled JL
Reduced dimension O( 1

ε2
log n

δ ) O( 1
ε2
log n

δ )

Dot product 〈x, y〉 ± ε‖x‖2‖y‖2 〈x, y〉 ± p(θx,y)‖x‖2‖y‖2
Euclidean distance (1 + ε)‖x− y‖22 ‖x− y‖22 ± 2p(θx,y)‖x‖2‖y‖2

The additive error term p(θ) in Theorem 3.1 depends on the actual angle between the input
vectors. To see how p(θ) varies with θ, we plot p(θ) as a function of θ for k = 400 (ε = 0.1) in
Figure 1. We see that p(θ) has a bell-shaped curve, which archives maximum at π/2 and minimum
at 0 and π. It is also easy to check that p(π/2) ≤ ε and p(0) = p(π) = 0 by substituting θ = 0, π/2,
and π into (2):

ε(0) = 2
√

E
g,u

[γ2 − 2γ] + 1 = 2
√

E
g,u

[0] = 0, ε(π/2) = 2
√

E
g,u

[γ2] = 2
√
E
u
[u2] = 2

√
1/k ≤ ε,

where the last inequality follows from k = d 4
ε2
e.
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Figure 1: We use Matlab to evaluate (2) and plot p(θ) as a function of θ for k = 400 (ε = 0.1).

3.1 Proof of Theorem 3.1

We first prove a constant probability bound (Lemma 3.3) for Rescaled JL embedding, and then use
it to derive a high probability bound (Theorem 3.1). The proof of Lemma 3.3 uses the result of
Lemma 3.2.

Lemma 3.2. Let u be the inner product of two vectors that are independently uniformly distributed
on the unit sphere Sk−1, then (u+ 1)/2 ∼ Beta(k−12 , k−12 ).

Proof. A proof of this lemma can be found at [Hub14].

Lemma 3.3. Given two vectors x, y ∈ Rd, define a Rescaled JL mapping: f(x) = Gx
‖Gx‖2

‖x‖2, where
each entry of G ∈ Rk×d is drawn independently from N(0, 1/k) Gaussian distribution. For any
ε ∈ (0, 1/2), if k = d 4

ε2
e, then with probability at least 3/4, we have

〈x, y〉 − p(θx,y)‖x‖2‖y‖2 ≤ 〈f(x), f(y)〉 ≤ 〈x, y〉+ p(θx,y)‖x‖2‖y‖2,

where θx,y is the angle between x and y, and p(·) is defined in (2).

Proof. We will show that

E[(〈f(x), f(y)〉 − 〈x, y〉)2] = p(θx,y)
2‖x‖22‖y‖

2
2/4. (3)

If (3) holds, then Markov’s inequality will give the desired bound:

P(| 〈f(x), f(y)〉 − 〈x, y〉 | ≥ p(θx,y)‖x‖2‖y‖2) ≤
E[(〈f(x), f(y)〉 − 〈x, y〉)2]

p(θx,y)2‖x‖22‖y‖
2
2

≤ 1

4
. (4)

To prove (3), note that

1. Since 〈f(x), f(y)〉 =
〈
f( x
‖x‖2

), f( y
‖y‖2

)
〉
‖x‖2‖y‖2, we only need to prove Lemma 3.3 for unit

vectors. In other words, we can assume ‖x‖2 = ‖y‖2 = 1 and prove that

E[(〈f(x), f(y)〉 − 〈x, y〉)2] = p(θx,y)
2/4.
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2. The random Gaussian matrix G will project x and y on a random subspace, so without loss
of generality we can assume that x = e1 and y = e1 cos θx,y + e2 sin θx,y, where e1 and e2 are
standard basis vectors in Rd.

Let g1, g2 ∈ Rk be the first two column vectors of G. Let u =
〈

g1
‖g1‖2

, g2
‖g2‖2

〉
, then

〈Gx,Gy〉 = 〈g1, g1 cos θx,y + g2 sin θx,y〉 = ‖g1‖22 cos θx,y + ‖g1‖2‖g2‖2u sin θx,y.

‖Gx‖2‖Gy‖2 = ‖g1‖2‖g1 cos θx,y + g2 sin θx,y‖2

= ‖g1‖2
√
‖g1‖22 cos2 θx,y + 2‖g1‖2‖g2‖2u cos θx,y sin θx,y + ‖g2‖

2
2 sin

2 θx,y.

Let g =
‖g1‖22
‖g2‖22

, then

〈f(x), f(y)〉 = 〈Gx,Gy〉
‖Gx‖2‖Gy‖2

=

√
g cos θx,y + u sin θx,y√

g cos2 θx,y + sin2 θx,y + 2u sin θx,y cos θx,y
√
g
= γ.

Here γ has the same definition as in Theorem 3.1, where g ∼ F(k, k), and u+1
2 ∼ Beta(k−12 , k−12 )

(Lemma 3.2). Now we can compute E[(〈f(x), f(y)〉 − 〈x, y〉)2] as

E[(〈f(x), f(y)〉 − 〈x, y〉)2] = E[〈f(x), f(y)〉2]− 2 cos θx,y E[〈f(x), f(y)〉] + cos2 θx,y

= E
g,u
γ2 − 2 cos θx,y E

g,u
γ + cos2 θx,y

= p(θx,y)
2/4,

where the last inequality follows from the definition of p(θ) in (2). We have thus proved (3) under
the assumption of unit vectors. The lemma then holds because of (4).

Proof of Theorem 3.1. For a fixed pair x, y ∈ X, we define t independent binary random vari-
ables Z1, ..., Zt, where Zi = 1 if the Rescaled Jl mapping fi(·) satisfies

〈x, y〉 − p(θx,y)‖x‖2‖y‖2 ≤ 〈fi(x), fi(y)〉 ≤ 〈x, y〉+ p(θx,y)‖x‖2‖y‖2.

Lemma 3.3 says that for any i ∈ [t], P[Zi = 1] ≥ 3/4. Let Z be 1 if

〈x, y〉 − p(θx,y)‖x‖2‖y‖2 ≤ median
i∈[t]

〈fi(x), fi(y)〉 ≤ 〈x, y〉+ p(θx,y)‖x‖2‖y‖2,

and 0 otherwise. Then

P[Z = 0] ≤ P[
1

t

t∑
i

Zi ≤ 1/2] ≤ e−O(t) ≤ δ

n2
, (5)

where the last two inequalities follow from the fact that 1
t

∑t
i Zi is subguassian with variance O(1/t),

and t = O(log n
δ ). Eq. (5) holds for any fixed pair x, y ∈ X. There are no more than n2 different

pairs, so ∀x, y ∈ X, the following is true with probability at least 1− δ,

〈x, y〉 − p(θx,y)‖x‖2‖y‖2 ≤ median
i∈[t]

〈fi(x), fi(y)〉 ≤ 〈x, y〉+ p(θx,y)‖x‖2‖y‖2.

We have proved a high probability bound for inner products. The high probability bound for squared
distances is straightforward because

‖fi(x)− fi(y)‖22 = ‖fi(x)‖
2
2 + ‖fi(x)‖

2
2 − 2 〈fi(x), fi(y)〉

= ‖x‖22 + ‖y‖
2
2 − 2(〈x, y〉 ± p(θx,y)‖x‖2‖y‖2)

= ‖x− y‖22 ± 2p(θx,y)‖x‖2‖y‖2.
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4 Experiments

In this section we will compare the empirical performance of JL and Rescaled JL. The goal is to
see how well the dot product as well as Euclidean distance computed in the low-dimension space
approximates those in the original high-dimension space.

4.1 Matlab Simulations

We conduct the following experiment in Matlab:

• For each θ ∈ [0, π] with interval 0.05, we generate 10 random pairs of vectors x, y ∈ R100 such
that ‖x‖2 = ‖y‖2 = 1 and 〈x, y〉 = ‖x‖2‖y‖2 cos θ.

• For each pair of vectors x, y generated in the previous step, we independently construct a
random Gaussian matrix G ∈ R10×100, where each entry Gij ∼ N(0, 1/10). Then we use JL
(f : x→ Gx) and Rescaled JL (f : x→ Gx

‖Gx‖2
‖x‖2) to transform x, y into f(x), f(y) ∈ R10.

• We generate scatter plots of (〈f(x), f(y)〉 , 〈x, y〉) and (‖f(x)− f(y)‖22, ‖x− y‖
2
2) in Figure 2.

We see that Rescaled JL (shown in red dots) seems to have smaller variance than JL (shown
in blue dots). Besides, the shape of red dots matches the shape of p(θ) shown in Figure 1.
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Figure 2: Scatter plots of (〈f(x), f(y)〉 , 〈x, y〉) (left) and (‖f(x)− f(y)‖22, ‖x− y‖
2
2) (right).

4.2 Mean Squared Error

The Mean Squared Error (MSE) for estimating dot product and Euclidean distance is defined as

E[(〈f(x), f(y)〉 − 〈x, y〉)2], E[(‖f(x)− f(y)‖22 − ‖x− y‖
2
2)

2],

where the expectation is over the randomness of the map f .
We have already computed an exact form of MSE for Rescaled JL in the proof Lemma 3.3 (see

Eq. (3)). Similar computation can be done for standard JL. In Figure 3 we compare the MSE as a
function of θ, where we see that Rescaled JL has smaller MSE than JL for dot product estimation,
but can perform worse for Euclidean distance estimation.
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Figure 3: MSE of dot product estimation (left) and Euclidean distance estimation (right). We use
the same parameters in Section 4.1: the reduced dimension is 10, and ‖x‖2 = ‖y‖2 = 1.

Note that in Figure 3, we assume that ‖x‖2 = ‖y‖2 = 1, so a natural question is to ask if the
MSE curve has the same trend when ‖x‖2 6= ‖y‖2. This is true for dot product estimation since
〈f(x), f(y)〉 =

〈
f( x
‖x‖2

), f( y
‖y‖2

)
〉
‖x‖2‖y‖2, which indicates that the ratio between the MSE for

Rescaled JL and JL will not change if we choose different ‖x‖2, ‖y‖2. However, it is not true for
Euclidean distance estimation. For example, in Figure 4 we plot the MSE for ‖x‖2 = 1, ‖y‖2 = 2.
We see that the Rescaled JL always has smaller MSE than JL, which is different from the case when
‖x‖2 = ‖y‖2 = 1 (shown in Figure 3).
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Figure 4: MSE of Euclidean distance estimation for ‖x‖2 = 1, ‖y‖2 = 2.
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Figure 5: We simulate the effect rescaling has on the MSE of dot products using the Fast JL
transform. We see that rescaling drastically improves performance for lower values of the angle θ.

4.3 Fast JL vs Rescaled Fast JL

So far we only consider random Gaussian matrices. In practice, we would want to use random matri-
ces with special structures in order to speed up the computation. Although our theoretical analysis
technique does not immediately allow us to analyze these variants, we experimentally see that rescal-
ing does improve performance greatly. In Figure 5 we simulate the Fast JL Transform [AC09] and
its Rescaled version. To simulate data, for each angle θ we generate 50 random pairs of unit vectors
in 1024 dimensions with an angle θ. The sparsity was set to 0.01 and the dimension after projection
is 20. We empirically compute the MSE for dot products. Figure 5 indicates that rescaling still
improves the performance for Fast JL Transform.

5 Conclusion

In this project we present a new idea of using rescaling to improve the accuracy of estimating
dot product and Euclidean distance (Eq. (1)). Theoretical guarantee is derived for Rescaled JL
(Theorem 3.1), which is then compared with standard JL (Table 1). We compute the exact form
of mean squared error (MSE) for Rescaled JL and JL. We observe that for dot product estimation,
Rescaled JL has smaller MSE than JL (Figure 3). However, this is not true for Euclidean distance
estimation, which depends on the norms of the input vectors (Figure 4). While our analysis focuses
on the simple random Gaussian matrices, we also demonstrated the effect of rescaling on the Fast
JL transform (Figure 5).
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