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Abstract—Opportunistic scheduling for a wireless network
with hybrid links is studied in this paper. Specifically, two link
types are considered: a link of the first type always has a much
lower transmission rate than a link of the second type. To avoid
starvation in the first type of links, two link types must be
treated differently in opportunistic scheduling, and quality of
service (QoS) constraints such as maximum delay or minimum
throughput must be imposed on the first link type. Considering
QoS constraints, a distributed opportunistic scheduling scheme
is derived based on the optimal stopping theory. Two scenarios
are considered for the QoS-oriented opportunistic scheduling
scheme. In the first scenario, all links within the same link
type follow the same rate distribution. Thus, QoS constraints
are imposed on the entire link type. In the second scenario,
links of the first type follow heterogeneous rate distributions.
Thus, QoS requirements need to be imposed on links with
the worst performance. Performance results show that the new
opportunistic scheduling scheme outperforms the existing ones
in most scenarios.

Index Terms—distributed opportunistic scheduling, quality of
service, hybrid links, optimal stopping theory.

I. INTRODUCTION
It is common that wireless links in a network have hetero-

geneous characteristics such as transmission rates and QoS
requirements. Such links are called hybrid links in this paper.
One factor leading to link heterogeneity involves application-
specific requirements for different links. For example, some
applications (e.g., control message transmissions in the smart
grid or cognitive radio networks) impose a strong requirement
on the security, and physical layer techniques [1][2][3] are
applied to ensure perfect secrecy in corresponding links (called
secure links) [4][5]. Since perfect secrecy comes at the cost
of degrading channel capacity [6][7], secure links have much
lower transmission rates as compared to other links (called
regular links). Due to security concern, secure links may
also demand stringent QoS guarantee. For ease of explanation
throughout this paper, we use secure links and regular links
to represent two link types that follow significantly different
rate distributions.
Packet transmissions in a network with hybrid links can be

conducted in two different approaches: 1) following a pure
random access medium access control (MAC) protocol; 2)
based on a scheduling scheme. The former approach is simple
and easy to implement, but may lead to low throughput in a
network with hybrid links due to the presence of performance
anomaly [8], i.e., the wireless medium is extensively occupied
by low rate transmissions on secure links. Therefore, the latter

approach is necessary to improve the network throughput.
Among existing scheduling schemes, opportunistic scheduling
is considered as the most effective to exploit fluctuations in
channel conditions to produce significant throughput gains for
the entire network [9][10][11]. The key idea of opportunis-
tic scheduling is explained as follows: given a transmission
opportunity, if a link with the highest transmission rate is
selected, the maximum throughput can be achieved. Unfor-
tunately, these opportunistic scheduling schemes rely on the
existence of the central controller (e.g., the base station in
cellular networks), and hence are hard to implement in ad
hoc networks or wireless mesh networks, where such a central
node is not readily available. To address this issue, several dis-
tributed opportunistic scheduling schemes are proposed [12]-
[21], which utilized local information to determine whether to
take transmission opportunities or not. However, the quality of
service (QoS) of interested links are not taken into account in
these schemes. Recently, a distributed opportunistic scheduling
scheme considering the delay QoS is developed in [21] based
on the scheme in [16]. However, this scheme is not applicable
to hybrid links, as it cannot guarantee QoS requirements for
a specific type of links (e.g., secure links) and at the same
time maximize the overall throughput. So far, there is a lack
of effective distributed opportunistic scheduling to support a
network with hybrid links.
In order to treat hybrid links separately and also support

QoS requirements of a specific type of links, a new distributed
opportunistic scheduling scheme is proposed in this paper.
It is developed based on the optimal stopping theory and
considering two type of links: secure links and regular links.
Compared with existing opportunistic scheduling schemes, the
new scheduling scheme is distinct with following features: 1)
the system overall throughput is maximized under various QoS
constraints of a specific link type (e.g., secure links); 2) it can
be implemented as a double-threshold scheduling policy, i.e.,
one threshold for each link type, and then a link determines its
transmission opportunity based on this threshold; 3) the rate
heterogeneity among the same type of links is also taken into
account to improve QoS of links with low channel quality.
Simulations are carried out to evaluate the new opportunistic
scheduling scheme. Performance results verify the optimality
of our scheme and demonstrate that QoS of secure links
can be effectively guaranteed under both homogeneous and
heterogeneous rate distribution scenarios. Moreover, results
also show that our scheme outperforms the existing ones in
most cases.
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The contribution of this paper is the development of a
new distributed scheduling framework that treats multiple
types of links separately in an efficient way and effectively
satisfies their own QoS requirements. Also, in our framework,
various patterns of QoS constraints, such as delay requirement,
throughput requirement, or both, are considered. Moreover,
the link heterogeneity among the same type of links is taken
into account in the framework, which effectively avoids the
starvation of the links with low channel quality.
The rest of the paper is organized as follows. The related

work is summarized in Section II. The system model for our
opportunistic scheduling is explained in Section III. The QoS-
oriented opportunistic scheduling scheme under the scenarios
of homogeneous and heterogeneous rate distributions is de-
rived in Section IV and Section V, respectively. Performance
results are presented in Section VI. Further discussions about
our scheme are provided in Section VII. The paper is con-
cluded in Section VIII.

II. RELATED WORK

Opportunistic scheduling is an effective way to utilize
the fluctuation of channel conditions to enhance the net-
work throughput performance. Several opportunistic schedul-
ing schemes (e.g., [9][10][11]) have been proposed for a
network with a central controller. However, these schemes are
not applicable to wireless mesh/ad hoc networks where such
controller does not exist. To solve this problem, several dis-
tributed opportunistic scheduling schemes are proposed [12]-
[21]. These schemes exploit local information to determine
whether to take transmission opportunities.
In [12], an opportunistic distributed scheduling is developed

and its capacity is investigated based on Point Process Ap-
proximation. It is shown that the capacity approaches that of
a centralized system where the best link is always selected to
transmit. In this paper, the author focuses on uplink traffic in a
multiple-access channel, while we consider peer-to-peer traffic
in an ad hoc network. In [13], a channel-aware ALOHA proto-
col is developed, where the nodes only transmit their packets
when their channel gains are above a given threshold. Also,
other channel-aware ALOHA schemes are designed according
to decentralized channel state information in [14][15]. Based
on the optimal stopping theory [22], a distributed opportunistic
scheduling is derived in [16] to maximize the system overall
throughput. In [17], the author investigates the stopping policy
when the channel qualities for different transmission periods
are correlated. In [18], the author proposes a distributed
opportunistic scheduling scheme exploiting game theory. In
this scheme, an effective mechanism is designed to combat
the issue of user selfishness. Although these schemes utilize
opportunistic transmissions to improve the network throughput
in a distributed manner, none of them takes into account
the quality of service (QoS) of interested links. Thus, these
schemes are not applicable to scenarios studied in this paper.
Distributed opportunistic scheduling schemes proposed in

[19], [20] and [21] are most related to the scheme developed
in this paper. In [19] and [20], an opportunistic scheduling
scheme is developed to maximize the proportionally fair

allocation. Based on the control theory, the scheme adapts
to the variation of network load and can dynamically drive
the system to the optimal operation point. This scheme is
different from ours in the following points. First, the scheme
considers the fairness. Although ensuring fairness is beneficial
to improve QoS of the links with low transmission rates,
it cannot directly guarantee a specific QoS requirement on
such links (e.g., the delay is less than a specific value or the
throughput is greater than a specific value). In contrast, our
scheme directly focuses on the QoS. Second, the proportion-
ally fair allocation is maximized in their scheme, instead of
the overall throughput of the network as our scheme. In [21],
an opportunistic scheduling scheme considering delay QoS
is developed based on the scheme proposed in [16]. In this
scheme, network centric delay constraints and individual delay
constraints are satisfied based on different strategies. However,
this scheme is not suitable for a network with hybrid links,
for two reasons: 1) A network-centric delay constraint cannot
guarantee the QoS requirements of one specific type of links;
2) If the individual delay constraint is applied to each link,
the overall throughput is not maximized.
To the best of our knowledge, the optimal stopping theory

[22] is first introduced to derive distributed opportunistic
scheduling schemes in [16][21]. The framework of derivations
in this paper is based on the work in [16][21] but makes
the following nontrivial and important extensions. First, in
our model, two types of links, which have different rate
distribution functions, different QoS requirements, and dif-
ferent transmission durations, are considered [23]. To meet
their QoS requirements, two types of links need to be treated
differently in the mathematical derivations, which leads to a
double threshold stopping policy. Furthermore, the strategies
for handling two types of links in this paper can be easily
extended to support multiple types of links with various
QoS requirements. Second, in our derivations we consider
both the delay constraints and the throughput constraints,
which leads to different derivations to obtain the scheduling
scheme. For instance, it is required to design more complicated
profit functions1 for opportunistic scheduling with throughput
constraints. Third, in our model, link heterogeneity among the
same type of links is taken into account. In this case, we set
constraints on a subset of one type of links, instead of the
whole set of links, which complicates the process of deriving
the optimal stopping thresholds and the maximum expected
profit equation2.

III. SYSTEM MODEL

In this paper, we focus on a single-hop ad hoc network
where all nodes can hear each other, as previous work
[16][18][19][21]. Such network model is common in various
communication scenarios such as wireless sensor networks
[24] and body area networks [25]. Moreover, a single-hop
network can serve as a building block for general multihop net-
works. A common and practical approach for managing packet
transmissions in a multihop network is to divide the whole

1The profit is defined in Appendix B.
2See Section IV-A
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network into several single-hop sub-networks and coordinate
transmissions among these sub-networks using hierarchical
methods [26]. In each sub-network, the scheduling schemes
developed for single-hop networks are adopted. Hence, the
study on single-hop networks also benefits the data transmis-
sions in general multihop networks.
The carrier sensing is enforced: if an ongoing transmission

is detected in the medium, a node will postpone its own
packets. Moreover, two types of links between nodes in this
network are considered: 1) secure links for transmitting critical
messages with physical layer security; 2) regular links for
other messages. Note that the links considered in this paper
are virtual. Thus, a secure link and a regular link can have
the same source and destination nodes. In this case, these two
links share a common physical link.
When the transmission medium is sensed idle, a node con-

tends the channel slot by slot with a fixed access probability
(i.e., p-persistent mechanism). To this ends, the node transmits
a pilot packet to its destination node at the beginning of certain
time slot. If two or more nodes contend the channel in the same
time slot, a collision occurs (denoted by “C” in Fig. 1). If only
one node sends a pilot packet to the channel, the destination
will successfully receive it and reply a confirmation packet.
In this case, the contention is successful (denoted by “S” in
Fig. 1). Note that the confirmation packet is transmitted in the
same time slot with the pilot packet. Thus, the size of a time
slot is set larger than the total length of a pilot packet and a
confirmation packet. If none of nodes transmits a pilot packet,
the channel remains idle (denoted by “I” in Fig. 1).
If a node successfully captures the channel, instead of

proceeding to data packet transmissions directly, it needs to
detect current channel quality and follow a decision rule to
determine whether or not a packet can be transmitted: if the
current channel quality is low, the node skips the transmission
opportunity to avoid the situation where the wireless medium
is occupied by a low-rate transmission, as shown in Fig. 1.
For this purpose, the node needs to know the current channel
quality and determine the decision rule. The channel from the
source to the destination is measured by the destination using
the preamble sequence in the pilot packet, and the results are
carried back by the confirmation packet. The decision rule is
derived based on the optimal stopping theory [22] such that the
network throughput is maximized under the constraints of QoS
requirements. If the opportunity is dropped, the contention
process restarts in the next time slot. Otherwise, the node starts
its data transmissions. The transmission can last multiple time
slots as shown in Fig. 1, and we assume that the channel
condition remains unchanged during the transmission process
(i.e., block-fading channel). In addition, we assume that the
channel conditions during different transmission periods are
independent, which is the same in the previous work [19],
[21].
To clearly present our opportunistic scheduling scheme,

several parameters are defined below. As shown in Fig 1, a
time slot has a length of t, and data transmission durations
for secure links and regular links are assumed constant and
denoted by Ds and Dr, respectively. There are M nodes in
the network. For the sake of clarity, we assume that each node

C
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Data transmission on 
a secure link

Data transmission on 
a regular link
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t

Ts
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Drop the opportunity

C

Fig. 1. The diagram for channel contention and data transmission.

has exactly one secure link and one regular link. However,
the derivation presented in Section IV and VI can be directly
applied to general cases. Given a time slot, node m contends
the channel for its secure link and regular link with the
probability (i.e., the persistent factor) equal to ps,m and pr,m
respectively. Furthermore, the probability that the secure link
of node m wins the channel contention, i.e., Ps,m, is given by

Ps,m = ps,m
∏

i̸=m

(1− ps,i − pr,i). (1)

Thus, Ps, defined as the probability that any secure link suc-
cessfully contends the channel, can be calculated by

∑

Ps,m.
Pr,m and Pr are defined for regular links in a similar way.
In addition, the transmission rates on the secure link and
the regular link of node m follow the distributions with
cumulative (probability) density function Fs,m(r) (fs,m(r))
and Fr,m(r) (fr,m(r)), respectively. As [19] and [21], these
distribution functions are assumed known. Moreover, for the
mathematical tractability, we assume that Fs,m(r) and Fr,m(r)
are differentiable, and fs,m(r) and fr,m(r) are greater than
zero for any r > 0. These assumptions are valid for com-
monly used rate distribution models [27]. For convenience,
let Rs denote the transmission rate on any secure link. The
distribution of Rs, i.e., Fs(r), is given by

Fs(r) =
∑

m

Ps,m

Ps
Fs,m(r). (2)

For regular links, Rr and Fr(r) are defined similarly.
As shown in Fig. 1, if a node successfully contends the

channel at time N and decides to transmit a data packet, then
we call N a stopping time. Given a stopping time N , TN

denotes the total time for this transmission round, including
contention period and packet transmission time DN . Here,
DN is equal to Ds if the transmission is on a secure link,
and is equal to Dr for the transmission on a regular link.
Also, RN is used to denote the transmission rate of the node.
If the transmission in this round is on a secure link, Rs

N is
used to denote the transmission rate (i.e., RN = Rs

N ). The
time between two successive transmissions on secure links is
denoted by Ts, which also stands for the delay of secure links.
Apparently, the choice of stopping time has influence on Ts.

IV. OPPORTUNISTIC SCHEDULING WITH HOMOGENEOUS
RATE DISTRIBUTIONS

To maximize the system overall throughput under various
QoS constraints for secure links, we develop a new distributed
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Fig. 2. The rate distributions of different links in the homogeneous scenario.

opportunistic scheduling scheme based on the optimal stop-
ping theory. First, the homogeneous rate distribution scenario
is considered, where the rate distributions of secure links
are identical to each other. In this case, the overall perfor-
mance of all secure links can effectively reflect that of each
individual link, since each link contributes equally to the
overall performance. Thus, in this section, we consider secure
links as a whole and set overall QoS constraints on all these
links. As soon as the overall QoS of secure links is satisfied,
corresponding QoS for each individual link is also guaranteed.
In practice, the developed scheduling scheme is useful in

two scenarios: 1) the rate distributions of secure links are close
to each other, as shown in Fig. 2; 2) the rate distributions are
different, but only the overall QoS of secure links needs to be
satisfied.

A. Opportunistic Scheduling with Throughput Constraint
We define ζ as the set of stopping times as follows:

ζ ! {N : N " 1, E[TN ] ≤ ∞}.

Also, let θs denote the throughput on all secure links, and
α stand for the minimum throughput requirement. The maxi-
mization of overall throughput under the throughput constraint
can be formulated as

maxN∈ζ
E[RNDN ]

E[TN ]
, subject to θs =

E[Rs
NDs]

E[Ts]
≥ α.

Note that a distributed opportunistic scheduling that maximizes
the overall throughput under QoS constraints is derived in [21]
based on optimal stopping theory, but the solution therein is
not applicable in our scenarios for two reasons. First, there
exist two different types of links in our problem, and the
constraint presented in our formula is applied to one type of
links instead of to all links. This leads to different stopping
policies for two types of links. Also, in [21], only the delay
constraint is considered, while in our problem the throughput
constraint is also studied. Hence, a new derivation is needed.
Let x∗ denote the maximum throughput under the through-

put constraint. According to Theorem 6.1 in [22], the opti-
mization problem formulated previously is equivalent to

maxN∈ζE[RNDN ]− x∗E[TN ],

subject to
αE[Ts]− E[Rs

NDs] ≤ 0.

The formulated optimization problem is a constrained one.
To solve this problem, we convert it into an unconstrained
one through the method of Lagrange multipliers. As proved
in Appendix A, the constraint qualification is satisfied in our
problem, In this case, the solution for the original problem
also maximizes the converted problem and the Karush-Kuhn-
Tucker (KKT) condition holds [28]. As a result, we can find
the optimal solution for the original problem by solving the
converted problem. If there are more than one solutions for
the converted problem, we select the one that maximizes the
original objective function.
Based on the method of Lagrange multipliers [29], the

optimization problem is converted to

maxN∈ζE[RNDN ]−x∗E[TN ]−λ(αE[Ts]−E[Rs
NDs]), (3)

where λ is the Lagrange multiplier. By solving this problem,
the following proposition can be derived.
Proposition 4.1: The optimal stopping rule for secure links

and regular links is a double-threshold policy. The threshold
for secure links is φs, and that for regular links is φr. If a
secure link wins the channel contention, it does not skip the
transmission opportunity only if Rs ≥ φs; if a regular link
successfully captures the channel, it takes the transmission
opportunity when Rr ≥ φr . The optimal thresholds for secure
links and regular links are given by

{

φs =
x∗+λα
1+λ ,

φr = x∗ + λα.
(4)

The proof can be found in Appendix B. According to the
proposition, it can be shown that φs < x∗ < φr. Thus packets
on regular links can be sent only when the current transmission
rate is greater than the system expected throughput, while mes-
sages on secure links are transmitted even if the transmission
rate is less than the throughput value. Such discrimination
between two types of links is helpful to favor the transmissions
on secure links and hence provides the QoS on these links.
In Proposition 4.1, the optimal thresholds φs and φr are

expressed in terms of (x∗,λ). Hence, further calculation of
φs and φr requires the knowledge of (x∗,λ). The procedure
for determining (x∗,λ) is presented as follows.
According to the definition of profit given in Appendix B,

the maximum expected profit L∗ can be expressed as

L∗ = PsE[max(RsDs + λRsDs − x∗Ds − λαDs, L
∗)

−kt(x∗ + λα)] + PrE[max(RrDr + λE[Rs
NDs]

−x∗Dr − λαDr − λαE[Ts], L
∗)− kt(x∗ + λα)],(5)

where k is the number of time slots before the first successful
channel contention. Note that the first expectation in the right
hand side of Eq. (5) denotes the maximum expected profit
when the first successful channel contention is won by a secure
link, while the second expectation stands for the maximum
expected profit when a regular link takes the first successful
channel contention. Since L∗ is zero as explained in Appendix
B, Eq. (5) can be simplified as

t(x∗+λα) = DsPs(1+λ)E[(Rs−φs)
+]+DrPrE[(Rr−φr)

+],
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where (·)+ denotes max{·, 0}. In addition, according to KKT
conditions, we have λ(E[Rs

NDs]− αE[Ts]) = 0, where
⎧

⎨

⎩

E[Rs
NDs] =

∫
∞

φs
rdFs(r)∫

∞

φs
dFs(r)

Ds,

E[Ts] =
t+Pr(1−Fr(φr))Dr

Ps(1−Fs(φs))
+Ds.

(6)

The first expression in Eq. (6) is based on the fact that
all transmissions on secure links are conducted with the
rates greater than φs, while the second expression can be
derived in a similar way as Appendix C. Combining the
maximum expected profit equation, KKT conditions, and
Eq. (4), (x∗,λ) is calculated with the Levenberg-Marquardt
algorithm (LMA) [30], a numerical method to solve non-
linear equations.Theoretically the convergence speed of LMA
is similar to that of widely known Gauss-Newton method.
However, in practice, the implementations of LMA are proved
more efficient in most scenarios [30]. Matlab [31] provides a
built-in function that implements the LMA algorithm. We use
this function to solve the above equations to obtain (x∗,λ).
Following that, the optimal threshold pair (φs,φr) can be
calculated based on Eq. (4).
It is necessary to emphasize that throughput constraint α

is effective only when it falls into a specific range. If α
is too small, the optimal thresholds derived from previous
equations will be equal to those in the unconstrained case.
In this scenario, the throughput constraint is inactive. If α is
too large, the constraint cannot be satisfied even if skipping
all regular transmissions. To characterize the lower bound and
the upper bound for α, we have the following proposition.
Proposition 4.2: The effective range for throughput require-

ment α is given by θLs ≤ α ≤ θUs , where θUs is the maximum
throughput of secure links when φr = ∞, and it can be
determined by

θUs =
Ps

∫∞

θU
s
rdFs(r)

t
Ds

+ Ps(1− Fs(θUs ))
.

Also, θLs is the throughput of secure links when the threshold
pair is equal to the optimal one (i.e. (φ∗,φ∗)3) for the
unconstrained case, and it is given by

θLs =
PsDs

∫∞

φ∗ rdFs(r)

t+ PsDs(1− Fs(φ∗)) + PrDr(1− Fr(φ∗))
.

The detailed proof of this proposition can be found in Ap-
pendix D. As the rate distributions of secure links improve, the
throughput of secure links with φr = ∞, i.e., θUs , increases due
to higher link rate for each transmission. Also, the throughput
of secure links with (φs,φr) = (φ∗,φ∗), i.e., θLs , enhances
because secure links get more transmission opportunities. Thus
, according to the proposition, both upper bound and lower
bound of the effective range for α will increase with better
rate distributions of secure links.

B. Opportunistic Scheduling with Delay Constraint
In this subsection, an opportunistic scheduling scheme with

delay constraint is studied. Similar to the network-wide aver-
age delay defined in [21], the delay studied in this subsection
3In the unconstrained scenario, the thresholds for secure links and regular

links are identical.

is imposed on the set of all secure links instead of a specific
secure link. Specifically, the delay imposed on the set of
secure links (denoted by Ts) is defined as the time between
two successive transmissions on any secure links, as shown
in Fig. 1. In contrast, the delay on a secure link of node
m (denoted by Ts,m) is defined as the time between two
successive transmissions on this link. In homogeneous cases, if
there are n secure links in total, the average delay on a specific
secure link is about n times as that on the set of all secure
links, i.e., E[Ts,m] = nE[Ts]. Based on this relationship, we
can set the delay constraint imposed on the set of all secure
links (i.e., Ts) according to the delay requirement of individual
secure link.
Let σs stand for the average delay of secure links, and β

denote the delay requirement. Thus, we formulate the problem
as

maxN∈ζ
E[RNDN ]

E[TN ]
, subject to σs = E[Ts] ≤ β.

As discussed in Section IV-A, the previous optimization prob-
lem is equivalent to

maxN∈ζE[RNDN ]− x∗E[TN ]− µ(E[Ts]− β),

where µ is the Lagrange multiplier. By solving this problem,
the optimal threshold pair can be derived as

{

φs = x∗ + µ− µβ
Ds

,
φr = x∗ + µ.

To further calculate (φs,φr), following equations are needed:

t(x∗ + µ) = PsDsE[(Rs − φs)
+] + PrDrE[(Rr − φr)

+],

and
µ(E[Ts]− β) = 0,

where the first equation is the maximum expected profit
equation and the second one is from KKT conditions [29].
The derivation of above equations and the calculation of the
optimal thresholds follow the similar framework presented
in Section IV-A and Appendix B. In addition, similar with
throughput constraint, delay requirement β also has an effec-
tive range as described in the following proposition.
Proposition 4.3: The delay constraint β has a lower effective

bound βL and an upper effective bound βU . βL is the minimal
possible average delay for secure links, and is given by βL =
t
Ps

+Ds. βU is the average delay for secure traffic when the
thresholds for secure links and regular links are set to these
(i.e., φ∗ for both types of links) in the unconstrained case, and
it can be determined by

βU =
t+ Pr(1 − Fr(φ∗))Dr

Ps(1 − Fs(φ∗))
+Ds.

Proof: For the lower bound, Ts includes time period
t/Ps for at least one round successful channel contention and
packet transmission time Ds. Hence, the minimum achievable
delay requirement is t

Ps
+Ds. For the upper bound, if delay

requirement β is greater than βU , then the optimal threshold
pair for the unconstrained case is located in the feasible
domain, which indicates that this optimal solution is also
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the one for the constrained problem. In this case, the delay
constraint is inactive.
According to the proposition, the lower bound of the ef-

fective range is determined by access probabilities of secure
links and unrelated to rate distributions, while the upper bound
decreases as the rate distributions of secure links improve.

C. Opportunistic Scheduling with Throughput and Delay Con-
straints
In some scenarios, both throughput and delay requirements

are imposed. In this case, the problem for maximizing the
overall throughput can be formulated as

maxN∈ζ
E[RNDN ]

E[TN ]
,

subject to

θs =
E[Rs

NDs]

E[Ts]
≥ α and σs = E[Ts] ≤ β.

As discussed in Section IV-A, the above optimization problem
is equivalent to

maxN∈ζ E[RNDN ]− x∗E[TN ]− λ(αE[Ts]− E[Rs
NDs])

−µ(E[Ts]− β),

where λ and µ are the Lagrange multipliers. By solving this
problem, the optimal stopping rule is derived. Similar to the
case of a single constraint (e.g. throughput or delay), this rule
is also a double-threshold stopping policy, and the optimal
thresholds are given by

{

φs =
x∗+λα+µ− µβ

Ds

1+λ ,
φr = x∗ + λα+ µ.

The calculation of above thresholds requires the knowledge
of (x∗,λ, µ), which can be determined with the following
equations:

t(x∗ + λα+ µ) = PsDs(1 + λ)E[(Rs − φs)
+]

+PrDrE[(Rr − φr)
+], (7)

and
{

λ(E[Rs
NDs]− αE[Ts]) = 0,

µ(E[Ts]− β) = 0.
(8)

Eq. (7) is the maximum expected profit equation, while Eq.
(5) and Eq. (8) are from KKT conditions.
Similar to single constraint scenarios, there exists an area

where both throughput requirement α and delay requirement β
are effective. To characterize this area, we have the following
proposition.
Proposition 4.4: For a given delay requirement β, the

effective range for α is bounded by
[
∫∞

φL
s
rdFs(r)

β(1 − Fs(φL
s ))

Ds,

∫∞

φH
s
rdFs(r)

β(1 − Fs(φH
s ))

Ds

]

,

where
{

φL
s = F−1

s (1− t+PrDr

Ps(β−Ds)
),

φH
s = F−1

s (1 − t
Ps(β−Ds)

).
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Fig. 3. The rate distributions of different links in heterogeneous scenarios.

The detailed proof is given in Appendix E. When α lies on the
left side of the range given in the proposition, the throughput
constraint is less tight than the delay constraint. In this case,
the throughput constraint is inactive. When α is greater than
the upper bound of the range, the throughput requirement
imposes a stronger constraint on the problem. In this case,
the delay constraint is inactive.

V. OPPORTUNISTIC SCHEDULING WITH HETEROGENEOUS
RATE DISTRIBUTIONS

In this section, the heterogeneous rate distribution scenario
is considered, where the rate distribution of a secure link can
be significantly different from those of other secure links, as
shown in Fig. 3. In this scenario, the overall performance
of secure links cannot reflect that of each individual link.
Actually, if we consider all secure links as a whole as previous
sections, the opportunistic scheduling scheme will provide
more transmission opportunities to links with good link quality
and cause the starvation of links with poor channel quality,
which leads to unacceptable QoS for these links. To avoid
this situation, we set QoS constraints for secure links with the
worst link conditions instead of putting QoS requirements on
the whole set of secure links.

A. Worst link analysis
The basic idea behind our scheme for heterogeneous sce-

narios is to set QoS constraints on the secure links with the
worst performance instead of on the whole set of secure links.
Hence, before imposing QoS constraints, we need to identify
such links. Considering the secure link of nodem, the average
delay of this link, i.e., E[Ts,m], can be expressed as

E[Ts,m] =
∆

Ps,m(1− Fs,m(φs))
, (9)

where

∆ = t+
∑

i

Ps,i(1−Fs,i(φs))Ds+
∑

i

Pr,i(1−Fr,i(φr))Dr.

The derivation of this expression can be found in Appendix
C. According to the above equation, the numerators of delay
expressions for all secure links are exactly the same. Therefore,
the secure link with the worst delay can be determined if we
can find a link with the minimum denominator value in its
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Fig. 4. The value of denominators in delay expressions for secure links.

delay expression. Furthermore, if the worst link is identified
and the delay QoS constraint is set on the link, the delay of
any other secure links will also meet this QoS requirement,
since these links have better delay performance as compared
to the worst link.
However, in some scenarios such link cannot be determined

without the knowledge of the threshold for secure links.
This can be explained with the following example. Consider
three secure links with heterogeneous rate distributions. The
denominator values in their delay expressions under different
thresholds of secure links (i.e., φs) are plotted in Fig. 4. If
the threshold is equal to a, the denominator of Link 1 has the
minimum value, and hence Link 1 is the worst link; if the
threshold is equal to b, Link 2 is the worst in delay. Namely,
with different thresholds φs, the link that experiences the worst
delay performance is different. Therefore, unless we know the
threshold of secure links, we cannot determine the secure link
with the worst delay performance.
In this case, instead of identifying a unique secure link that

experiences the worst performance, we consider all links that
potentially become the worst link in an interested range of
φs. We call these links potential-worst links. In the previous
example, both Link 1 and Link 2 can be the worst link under
different thresholds of secure links. Therefore, Link 1 and Link
2 are both potential-worst links. However, Link 3 has evidently
better quality than Link 1 and Link 2 and never experiences the
worst delay performance. Therefore, Link 3 does not belong
to the set of potential-worst links. Generally, potential-worst
links have relatively poor channel quality. To help these links
to achieve an acceptable performance, we treat these links as
a group and set QoS constraints on the group.

B. Opportunistic scheduling with the delay constraint on
potential-worst links

We define ξ as the set that consists of all potential-worst
secure links. Furthermore, the delay on the set of potential-
worst links is defined as the time between two successive
transmissions on links belonging to this set. For convenience,
Tpw is used to denote this delay.
To avoid the starvation on potential-worst links, we set the

delay requirement on these links as E[Tpw] # γ. Therefore,

the problem of maximizing the overall throughput under the
delay constraint can be formulated as

maxN∈ζ
E[RNDN ]

E[TN ]
, subject to E[Tpw] ≤ γ,

where ζ denotes the set of stopping times. As discussed in
Section IV-A, the previous optimization problem is equivalent
to

maxN∈ζ E[RNDN ]− x∗E[TN ]− ω(E[Tpw]− γ),

where ω is the Lagrange multiplier. By solving this optimiza-
tion problem, we can derive the following proposition.
Proposition 5.1: The optimal stopping rule that maximizes

the overall throughput under the delay constraint on potential-
worst links is a double-threshold policy, and the optimal
threshold pair is given by

{

φs = x∗ + ω −
∑

i∈ξ Ps,i

Ps

γω
Ds

,
φr = x∗ + ω.

Also, the value of (x∗,ω) can be determined with the follow-
ing equations
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t(x∗ + ω) = PsDsE[(Rs − φs)+] + PrDrE[(Rr − φr)+]

+
(Ps−

∑
i∈ξ Ps,i)(

∑
i∈ξ Ps,i)γω

Ps
F∆,

ω (E[Tpw]− γ) = 0,

where F∆ denotes the difference between the value of the
rate distribution function of non-potential-worst secure links
at φs (i.e., Fs,nw(φs)) and that of potential-worst links (i.e.,
Fs,pw(φs)). The proof of this proposition can be found in
Appendix F.

C. Discussion
The proposed scheme can effectively guarantee that the

delay on the set of potential-worst links is less than a specified
value γ. Considering that there are np links in this set, if
these links have comparable performance given the threshold
pair derived from above equations, the delay of each link is
approximately equal to npγ. Since the worst link belongs to
the set of potential-worst links, the delay of all other secure
links outside the set is not longer than npγ. In this case, the
delay performance of each secure link is guaranteed to be not
worse than a specific level (i.e., npγ) by our scheme.
If potential-worst links do not have comparable performance

given the derived thresholds, the delay of the worst link can
be longer than npγ. In this case, the proposed scheme cannot
guarantee that each link meets the delay performance of a
specific level. However, by setting constraints on the whole
set of potential-worst links, the scheme is still beneficial to
avoid the severe starvation of low-quality secure links in
heterogeneous scenarios.
Another possible solution for heterogeneous scenarios is to

separate the worst links from the secure links, treat them as an
individual type, and derive a special threshold for them. This
scheme can achieve better performance than the one proposed
in this section, since there are more degree of freedoms to
select thresholds for various links. However, it also increases
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TABLE I
NORMALIZED SNR FOR SECURE LINKS AND REGULAR LINKS OF

DIFFERENT NODES

Node 1 Node 2 Node 3 Node 4 Node 5

Homo Secure 1 1 1 1 1
Regular 5 5 5 5 5

Hetero Secure 0.4 0.4 1 1 1
Regular 2 2 5 5 5
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Fig. 5. Optimal throughput under various QoS constraints.

the number of link types in our scheme. Moreover, after
separating the worst links, there may be still heterogeneity
among secure links, and the further separation is needed. As
a result, much more types of links need to be considered,
which significantly increases the complexity of the scheme as
discussed in Section VII-A and may not be practical in many
cases.

VI. PERFORMANCE EVALUATION
In this section, the new scheduling scheme is evaluated by

several experiments. In our simulation, we consider a network
consisting of five nodes4, and each of them maintains its own
regular link and secure link to other nodes. The transmission
rate on a link is assumed to be equal to the channel capacity
given by

R = log(1 + ρ|H |2) nats/s/Hz,

where H denotes the random channel gain that follows a
complex Gaussian distribution with the variance equal to 1,
and ρ is the normalized SNR for the link. In the simulations

4Since our method is insensitive to the number of nodes in the network, a
simulation with five nodes is enough to demonstrate the network performance.

TABLE II
THROUGHPUT AND DELAY WITH DOUBLE CONSTRAINTS UNDER

HOMOGENEOUS SCENARIOS.

P 0.15 0.30 0.45 0.60 0.75 0.90

θtotal (nats/s/Hz) 0.836 1.224 1.338 1.385 1.385 1.272
θs (nats/s/Hz) 0.401 0.399 0.418 0.432 0.429 0.401
σs (slot times) 68.70 75.07 75.12 74.88 75.19 75.05

for homogeneous scenarios, all links belonging to the same
type are set with identical normalized SNR as given in Table
I, while in heterogeneous cases, the links of Node 1 and Node
2 have evidently worse link quality as shown by Table I. In
addition, the transmission duration for regular links is equal
to 30 time slots, while that for secure links varies in different
experiments and its default value is 30 time slots. Moreover,
to reflect traffic load of the network, channel occupancy ratio
is introduced and defined as

P = 1−
∏

m

(1 − ps,m − pr,m).

Without being explicitly specified, ps,m and pr,m for any node
m are equal to 0.1 in our experiments. In this case, the channel
occupancy ratio is 0.672.
Based on above parameters, our scheme is evaluated with

Matlab programs. Given a specific setting (including thresh-
olds for different types of links, channel access probabilities
for nodes, transmission duration, etc.), our network simulation
program runs for 107 time slots and performance results, such
as overall throughput, throughput on secure links, and delay of
secure links, are recorded. Note that the performance variation
introduced by channel condition/medium access randomness is
negligible with the specified running time (i.e., 107 time slots).

A. Homogeneous Scenarios
To verify the optimality of threshold pairs derived in Section

IV, we compare the throughput performance of our scheme
(denoted by QDOS) with the optimal throughput obtained by
the enumeration method (denoted by Enum.) under various
QoS constraints. In the enumeration method, we search over
all possible threshold combinations (φs,φr), and our network
simulation program runs for each combination. Based on sim-
ulation results, threshold combinations that do not guarantee
the QoS constraints are removed. Among remaining ones the
combination leading to the maximum overall throughput is
selected and the corresponding maximum value is recorded.
The comparison results between QDOS and Enum. under

various QoS constraints are shown in Fig. 5(a) and Fig. 5(b). It
can be observed that the throughput of QDOS is always equal
to the optimal value obtained through enumerating all possible
threshold pairs. These results demonstrate the optimality of our
scheme.
Performance results of our scheduling scheme with differ-

ent QoS constraints are shown in Fig. 6. For comparison,
performance of another two access schemes is provided: 1)
the pure random access scheme, namely the scheme with
both φs and φr equal to zero; 2) the distributed opportunistic
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Fig. 6. Throughput and delay with different schemes under homogeneous scenarios.

Th
ro

ug
hp

ut
(n

at
s/

s/
H

z)

 

 

THO THS
0

0.5

1

1.5
ADOS
QDOS

(a) Case 1

Th
ro

ug
hp

ut
(n

at
s/

s/
H

z)

 

 

THO THS
0

0.5

1

1.5
ADOS
QDOS

(b) Case 2

Fig. 7. Performance comparison between QDOS and ADOS under homoge-
neous scenarios.

scheme (DOS) proposed in [16]. From Fig. 6(a), we know
that the overall throughput of our scheme is significantly
higher than that of the random access scheme. Also, when the
channel occupancy ratio is greater than 0.2, the throughput
performance loss of our scheme as compared to DOS scheme
is within 14%. This result indicates that the overall throughput
of our scheme is not significantly compromised. Fig. 6(b)
and Fig. 6(c) show the QoS of secure links under different
schemes. The results indicate that there is no QoS guarantee
on secure links in DOS scheme. In contrast, our scheme
with the throughput constraint can effectively guarantee the
throughput performance of secure links, while our scheme
with the delay constraint successfully controls the delay on
secure links to an acceptable level. Moreover, note that the
throughput requirement α = 0.4 is not satisfied in the low
channel occupancy ratio range when only the delay constraint
is imposed on our scheme. Also, the delay requirement β = 75
is violated in the high channel occupancy range if our scheme
only sets the throughput constraint. Therefore, if both through-
put QoS and delay QoS are required, our scheduling scheme
with double constraints needs to be applied. In Table II, the
overall throughput (θtotal) and QoS of secure links for our

scheme with double constraints are summarized. The results
show that both delay (σs) and throughput (θs) requirements of
secure links are satisfied at any channel occupancy ratio (P ).
This confirms the effectiveness of our scheme.
In addition, our scheme is compared to the approach pro-

posed in [19] (ADOS) in two cases. In the first case, the
transmission duration for secure links is equal to that for
regular ones, i.e., Ds = 30. In this case, the delay QoS
requirement for secure links is set to 75 time slots as before.
In the second case, the transmission duration for secure links
is equal to 5 time slots. This case is also a typical one: in
many scenarios, messages requiring high-level security (e.g.,
bank/game account information) usually have much smaller
sizes than regular ones (e.g., P2P streams) [32]. In the second
case, the delay QoS requirement for secure links is set to 25
time slots. In addition, since ADOS scheme cannot directly
guarantee a specific QoS requirement for secure links as
discussed in Section II, we impose a weight coefficient for
secure links in the objective function of [19], and keep tuning
this coefficient until the delay QoS constraint is satisfied.
The performance results under two schemes, including the

overall throughout (marked as THO) and the throughput of
secure links (marked as THS), are shown in Fig. 7. In the first
case, the performance gain of QDOS over ADOS is about 2%.
In the second case where Dr/Ds becomes larger, the gain
increases to 5%. This can be explained as follows. According
to Eq. (12) in [19], when Dr/Ds increases, ADOS scheme
provides more channel access opportunities to secure links to
guarantee the fairness. The more preference on secure links
has a negative impact on the overall throughput and leads to
larger performance gap as compared to QDOS.

B. Heterogeneous Scenarios
The scheme derived for heterogeneous scenarios are evalu-

ated in this section. A set of links with different normalized
SNRs are used in the evaluations, and their SNR values
are given in Table I. Based on these SNRs, the CDFs of
transmission rates on these links are determined according to
Eq. (??). Following the definition of potential-worst links in
Section ??, we identify these links (i.e., Link 1 and Link 2) in
our evaluation setting, and impose QoS constraints on them.
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Fig. 8. Throughput and delay with different schemes in the heterogeneous scenario.
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Fig. 9. Performance comparison between QDOS and ADOS under heteroge-
neous scenarios.

To verify the optimality of QDOS scheme derived for
heterogeneous scenarios, we compare QDOS with Enum. as
discussed in Section VI-A. In this experiment, the delay
constraint for potential-worst links varies from 100 time slots
to 1200 time slots. The comparison results are shown in Fig.
5(c). It can be observed that the throughput of QDOS under
various delay QoS requirements is always equal to the opti-
mal throughput obtained from the enumeration method. This
confirms that the derived threshold pairs for heterogeneous
scenarios are optimal.
To study the performance of QDOS for heterogeneous

scenarios, we compare it with various schemes. First, we
evaluate the performance difference between homogeneous
and heterogeneous QDOS. In this case, we require that the
delay QoS of each secure link is controlled to the level of
600 time slots or less. If QDOS designed for homogeneous
cases is applied, all secure links are equally treated, and
the previous QoS requirement on each individual secure link
leads to a delay constraint equal to 120 on the whole set of
secure links (there are five secure links in total). With QDOS
designed for heterogeneous scenarios, the delay constraint is

only imposed on potential-worst secure links, and the previous
QoS requirement converts to a delay constraint equal to 300
on the potential-worst link set (there are two secure links in
this set).
The simulation results under two QDOS schemes (QDOS

for homogeneous scenarios and QDOS for heterogeneous sce-
narios) are given in Fig. 8. For comparison, the performance of
DOS proposed by [16] is also provided. The overall throughput
and the throughput of secure links are plotted in Fig. 8(a). It
can be found that the overall throughput under QDOS for het-
erogeneous scenarios degrades 17.8% and 13.1% as compared
to that under DOS and that under QDOS for homogeneous
scenario respectively. The drop in the overall throughput is due
to the fact that more transmission opportunities are provided
to secure links (especially potential-worst ones) in QDOS for
heterogeneous scenarios, which is reflected by the throughput
of secure links under three schemes as shown in Fig. 8(a). QoS
performance for each secure link under two QDOS schemes
is shown in Fig. 8(b) and Fig. 8(c). With QDOS designed
for homogeneous scenarios, the delay QoS of potential-worst
secure links (secure links of Node 1 and Node 2) severely
violates the requirement set previously and the throughput
performance of these links indicates severe starvation. With
QDOS designed for heterogeneous scenarios, both delay and
throughput performance of potential-worst secure links are
significantly improved, and the delay QoS of each secure
link meets the performance requirement, which demonstrates
the necessity and effectiveness of considering heterogeneous
scenarios in QDOS.
The QDOS scheme for heterogeneous scenarios is also

compared to ADOS in two cases. In the first case, the
transmission duration for secure links (Ds) is 30 time slots,
which is equal to that for regular links (Dr). In this case, the
delay requirement is given by 300 time slots. In the second
case, Dr remains as 30 time slots, while Ds is set to 5 time
slots. This setting is common in real communication scenarios:
secure links are usually used to transmit the most critical
messages such as control frames, which is shorter than regular
data frames. In this case, the delay constraint is set to 50 time
slots. Similar to the experiment in homogeneous scenarios,
the objective function in [19] is modified by adding a weight
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coefficient for secure links, and the coefficient is tuned until
that the delay QoS requirement is satisfied.
The comparison results are shown in Fig. 9. In the first

case, the overall throughput of QDOS is 12% lower than that
of ADOS, while in the second case, our scheme outperforms
ADOS by 16%. The results indicate that when the radio
between Dr and Ds varies, the relative performance gain of
QDOS over ADOS also changes. This can be explained by
considering two factors. On the one hand, for the sake of
fairness, ADOS provides more channel access opportunities
to low-quality links under heterogeneous scenarios, which
causes the degradation of the overall throughput. On the other
hand, in ADOS scheme each node has individual thresholds
for determining whether to take transmission opportunities.
Compared to unified thresholds for all nodes, this scheme
is beneficial to improve the overall throughput under het-
erogeneous scenarios. When the first factor dominates as in
the second case (larger Dr/Ds), our scheme is better than
ADOS. If the second factor dominates as in the first case
(smaller Dr/Ds), our scheme does not outperform ADOS.
In addition, the comparison results indicate that our scheme
for heterogeneous scenarios can be further improved if each
node has individual thresholds as ADOS. This is subject to
the future research.

VII. DISCUSSION
A. Beyond Two Types of Links
In previous sections, two types of links, i.e., secure links

and regular links, are considered. Actually, our scheme can
be extended to support multiple types of links with various
QoS requirements. The scheme supporting multiple types of
links follows the same framework as developed in Section IV,
and the key steps for deriving optimal thresholds for different
types of links are summarized as follows:
1) Convert the objective function (i.e., the overall through-
put) based on the optimal stopping theory [22] and
the method of Lagrange multipliers [29] as Eq. (3) in
Section IV-A. Let {λi} (i ∈ [1, n]) denote the Lagrange
multipliers for QoS constraints, where n is the total
number of these constraints.

2) Define the profit function according to QoS requirements
as Appendix B. The expectation of the defined profit
must have the same expression as the converted objective
function.

3) Derive the optimal thresholds with respect to {λi} and
x∗ and the maximum expected profit equation following
the same strategies as those in Appendix B and Ap-
pendix F.

4) Determine {λi} and x∗ based on KKT conditions (n
equations) and the maximum expected profit equation.
Finally, the optimal thresholds can be calculated.

As the number of link types grows, the number of QoS
constraints on various types of links linearly increases. To
derive and calculate the optimal thresholds (i.e., the third
step and the fourth step) with n QoS constraints, 2n cases
need to be considered since each constraint could be active or
not. Thus, the complexity of determining optimal thresholds

exponentially increases as the number of link types. Such
growing complexity limits the number of link types that can
be considered in our scheme. The scheme proposed in Section
V is a remedy to this issue. With this scheme, we can provide
QoS to a group of links even if there are heterogeneous rate
distributions among the group, which can be considered as the
union of several link sets with homogeneous link distributions.
In this way, we decrease the number of link types considered
in the scheduling scheme, which reduces complexity of the
scheme.

B. Information Exchange for QDOS
In our scheme, each node needs rate distributions and

channel access probabilities of other nodes to calculate the
optimal threshold. As mentioned previously, we assume that
these parameters are known by each node, as previous work
[19][21]. However, in reality, rate distribution and channel
access probability of each node are collected by the node
itself, and need to be exchanged among different nodes. For
this purpose, a startup phase can be introduced. In this phase,
nodes exchange their channel access probabilities and rate
distribution information with others. After this phase, each
node can calculate the optimal thresholds and initiate data
transmissions following the scheduling scheme proposed in
the paper. If a node detects the variation of its parameters
after the startup phase, it notifies the change to other nodes
by piggybacking the new parameters in its data transmission.
Other nodes keep overhearing data transmissions in the

medium, extract the new parameters, and update the optimal
threshold. Generally, when these parameters vary slowly (i.e.
large channel coherence time), the performance penalty intro-
duced by the above information exchange scheme is minimal,
since the overhead is negligible as compared to a large amount
of data transmissions. However, if these parameters vary
quickly (i.e. small coherence time), it is difficult to catch up the
variation of these parameters through information exchange.
How to make a scheduling scheme (including our scheme and
the related ones [19][21]) perform well under such scenarios is
an interesting but challenging problem, which demands future
research.

VIII. CONCLUSIONS
Opportunistic scheduling considering QoS constraints for

hybrid links of a wireless network was studied in this pa-
per. Given different scenarios of rate distributions, two QoS
scheduling schemes were derived based on the optimal stop-
ping theory. These schemes balance throughput and QoS
guarantee of hybrid wireless links. Performance results showed
that QoS of a specific link type could be guaranteed without
significantly compromising the overall throughput of hybrid
links. Although this paper takes secure links and regular links
as an example of hybrid links, the QoS-oriented opportunistic
scheduling schemes derived in this paper are completely
applicable to other scenarios of hybrid links.
As indicated by simulation results, adopting individual

threshold for each link of a node is beneficial to improve the
overall throughput in heterogeneous scenarios. How to extend
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this paper to support individual threshold for each node is
subject to future research.

APPENDIX A
CONSTRAINT QUALIFICATION

To check whether the constraint qualification holds for our
optimization problems, we first define

g1 = E[Rs
NDs] and g2 = E[Ts].

The values of g1 and g2 are determined by the decision rule for
keeping or dropping the transmission opportunities. In our pa-
per, this rule is characterized by two thresholds φs (for secure
links) and φr (for regular links). If the current transmission
rate supported by the link that captures the channel is higher
than the corresponding threshold, the transmission opportunity
is taken. Otherwise, the opportunity is dropped. Thus, we have

∇g1 =

(

∂g1
∂φs
∂g1
∂φr

)

and ∇g2 =

(

∂g2
∂φs
∂g2
∂φr

)

.

According to Eq. (6), it can be shown that

∂g1
∂φs

=
fs(φs)

∫∞

φs
rdFs(r) − φsfs(φs)(1 − Fs(φs))

(1− Fs(φs))2

>
fs(φs)

∫∞

φs
φsdFs(r) − φsfs(φs)(1 − Fs(φs))

(1− Fs(φs))2
= 0

Also, we have ∂g1
∂φr

= 0.. Similarly, we can derive that

∂g2
∂φs

=
(t+ Pr(1− Fr(φr))Dr)fs(φs)

Ps(1− Fs(φs))2
,

and
∂g2
∂φr

=
−Prfr(φr)Dr

Ps(1− Fs(φs))
.

It can be observed that ∂g2
∂φs

is always greater than zero, while
∂g2
∂φr

is always less than zero. Furthermore, the constraints in
our problem can be expressed as

G1 = E[Rs
NDs]− αE[Ts] = g1 − αg2,

and
G2 = E[Ts]− β = g2 − β.

Thus, the gradients of G1 and G2 are given by

∇G1 = ∇g1 − α∇g2, and ∇G2 = ∇g2.

To verify linear independence constraint qualification, we need
to investigate whether the gradients of active constraints are
linearly independent. If only the constraint G2 is active (in the
optimization problems in Section IV-B or Section IV-C), we
only need to verify that ∇G2 ̸= 0. Note that ∇G2 = ∇g2 and
∂g2
∂φr

is always less than zero. Hence, ∇G2 is not equal to 0

for any (φs,φr).
If only the constraint G1 is active (in the optimization

problems in Section IV-A or Section IV-C), we only need
to verify that ∇G1 ̸= 0. Since ∂g1

∂φr
= 0 and ∇G1 =

∇g1 − α∇g2, we can derive that ∂G1

∂φr
= −α ∂g2

∂φr
. Because

throughput requirement α is greater than zero and ∂g2
∂φr

is

Channel contention 
period: successful (S), 
collision (C) or idle (I)

Data transmission on 
a secure link

Data transmission on 
a regular link

Stopping time N1

T s

DN1

DN1

T s

Stopping time N2

Stopping time N1 (N2)

Case 1

Case 2

Fig. 10. Two cases for stopping rule N1: 1) a secure link wins the channel;
2) a regular link wins the channel.

always less than zero, ∂G1

∂φr
is always greater than zero. Hence,

∇G1 is not equal to 0 for any (φs,φr).
When both G1 and G2 are active (in the optimization

problem in Section IV-C), assume that there exists a pair
(φs,φr) such that ∇G1 and∇G2 are linearly dependent. Then
we have ∇G1 = c∇G2, where c is a constant. Following that,
it can be shown that ∇g1 − α∇g2 = c∇g2. If so, we have
∇g1 = (α + c)∇g2. Since ∂g1

∂φr
= 0 while ∂g2

∂φr
< 0, we can

conclude that (α + c) is equal to zero, which further leads
to ∇g1 = 0. However, we have shown that ∂g1

∂φs
is always

greater than 0. This is a contradiction. Hence for any pair
(φs,φr), ∇G1 and ∇G2 are linearly independent.The above
derivation shows that for our optimization problems in Section
IV-A, Section IV-B, and Section IV-C, the linear independence
constraint qualification holds with respect to any threshold pair
(φs,φr).

APPENDIX B
PROOF OF PROPOSITION 4.1

For the sake of clarity, we define the profit for stopping rule
N1 (i.e., a node successfully contends the channel at time N1

and then starts the transmission) as

RN1
DN1

+ λRs
N2

Ds − x∗TN1
− λαT

′

s ,

where N2 is the first stopping time for secure links after
N1 (including N1). Thus, if the link that wins the channel
contention at N1 is a secure one, N2 is equal to N1. Also,
T

′

s denotes the time from the beginning of the contention
period for stopping rule N1 to the end of the transmission
for stopping rule N2, as shown in Fig. 10. Also, according to
the memoryless characteristic of our system model, we have

E[T
′

s] = E[Ts].

Thus, the maximum expected profit for stopping rules, denoted
by L∗, can be expressed as

maxN∈ζE[RNDN ]− x∗E[TN ]− λ(αE[Ts]− E[Rs
NDs]).

According to Theorem 6.1 in [22] and KKT conditions, the
value of L∗ is zero. Moreover, it can be observed that the
above expression is identical with the optimization formulation
presented in Section IV-A. Therefore solving the optimization
problem in Section IV-A is equivalent to finding the optimal
stopping rule that maximizes its expected profit. To maximize
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this expectation, the opportunistic scheduling allows the packet
transmission only when the system meets the most favorable
opportunity: given a node that successfully contents the chan-
nel, if the profit for transmitting immediately is greater than
the maximum expected profit with skipping the opportunity
and waiting for the next stopping time, the node starts the
transmission; otherwise the opportunity is dropped.
Consider a node successfully contends the channel for its

secure link. If the node takes this transmission opportunity,
the profit can be quantified as

RsDs + λRsDs − x∗Ds − λαDs − (x∗ + λα)Tcont,

where Tcont is the contention period before this successful
channel contention. However, if the node skips this opportu-
nity, based on the time-invariant characteristic of the system,
the maximum expected profit is given by L∗−(x∗+λα)Tcont.
Hence, if

(1 + λ)RsDs − x∗Ds − λαDs ≥ L∗,

the profit for taking the transmission opportunity is greater
than that with skipping the opportunity and waiting for the
next stopping time. In this case, the packet on this secure link
is transmitted. However, if (1 + λ)RsDs − x∗Ds − λαDs <
L∗, transmitting immediately is less favorable than waiting for
better opportunity. In this case, the node drops the transmission
and the channel contention restarts. Therefore, the stopping
threshold for secure links is given by Rs ≥ x∗+λα

1+λ = φs.
Similarly, if a regular link succeeds in channel contention,
the maximum expected profit with skipping the transmission
opportunity is L∗− (x∗ +λα)Tcont, while the expected profit
from taking the transmission opportunity is given by

RrDr+λE[Rs
NDs]−x∗Dr−λα(Dr+E[Ts])−(x∗+λα)Tcont.

Note that after the end of current transmission, the expected
waiting time for the next transmission on secure links is equal
to E[Ts] according to the memoryless characteristic of our
system model. In addition, based on KKT conditions [29], we
have λ(E[Rs

NDs]− αE[Ts]) = 0. Thus, the profit expression
can be simplified as RrDr−x∗Dr−λαDr− (x∗+λα)Tcont.
Therefore, when RrDr − x∗Dr − λαDr ≥ L∗, the regular
packet is transmitted. Otherwise the transmission opportunity
is skipped. Hence, the transmission threshold for regular links
is given by φr = x∗ + λα. The proposition is proved.
Also, the derivation for the optimal stopping rules with the
delay constraint and double constraints follows the similar
framework as presented above.

APPENDIX C
DERIVATION ON THE DELAY EXPRESSION

To derive the expression of the average delay for the secure
link of node m, i.e. E[Ts,m], we define p1 as the probability
that, given a time slot, the secure link successfully contents
the channel and takes the transmission opportunity following
the stopping rule. Thus, p1 can be expressed as

p1 = Ps,m(1− Fs,m(φs)).

Also, p2 is defined as the probability that other secure links or
regular links win the channel contention in a given time slot

and take the transmission opportunity following the stopping
rule. Hence, it can be shown that

p2 =
∑

i̸=m

Ps,i(1− Fs,i(φs)) +
∑

i

Pr,i(1− Fr,i(φr)).

For convenience, we use p2,s and p2,r to denote the first
term and the second term in the right hand side of the above
equation, respectively. Furthermore, the probability p3, defined
as the probability that no transmission will start at the end of
a given time slot, can be expressed as

p3 = 1− p1 − p2.

Considering the first time slot after a transmission on the
secure link of nodem, if this link wins the channel contention
again and the current transmission rate exceeds the threshold
for secure links, another transmission will start on this link.
In this case, the delay is given by

Ts,m = t+Ds,

If a transmission starts on other links at the end of the slot
(we use C2 to denote this case), according to the memoryless
characteristic of our system model, the expected delay of the
secure link of node m under this case can be denoted as

E[Ts,m|C2] = t+D0 + E[Ts,m],

whereD0 denotes the expected transmission time after the end
of the given time slot under C2, and can be expressed as

D0 =
p2,s
p2

Ds +
p2,r
p2

Dr.

If no transmission starts at the end of the slot (we use C3 to
denote this case), the expected delay is given by

E[Ts,m|C3] = t+ E[Ts,m].

Therefore, it can be shown that

E[Ts,m] = p1(t+Ds)+p2(t+D0+E[Ts,m])+p3(t+E[Ts,m]).

Hence, we have

E[Ts,m] =
t+ p1Ds + p2D0

p1
=

∆

Ps,m(1 − Fs,m(φs))
,

where

∆ = t+
∑

i

Ps,i(1−Fs,i(φs))Ds+
∑

i

Pr,i(1−Fr,i(φr))Dr.

The average delay on the set of secure links can be derived in
a similar way.

APPENDIX D
PROOF OF PROPOSITION 4.2

The overall throughput of secure links is the summation of
throughput of each secure link. Hence, we have

θs =
M
∑

m=1

θs,m =
M
∑

m=1

E[Rs,mDs]

E[Ts,m]
,

where θs,m denotes the throughput on the secure link of
node m, Rs,m stands for the rate for the transmission on
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this link, and Ts,m indicates the time between two successive
transmissions on the link. Furthermore, it can be shown that

θs =
M
∑

m=1

∫
∞

φs
rdFs,m(r)

1−Fs,m(φs)
Ds

t+
∑

i Ps,i(1−Fs,i(φs))Ds+
∑

i Pr,i(1−Fr,i(φr))Dr

Ps,m(1−Fs,m(φs))

.

The previous equation can be simplified as

θs =
PsDs

∫∞

φs
rdFs(r)

t+ PsDs(1 − Fs(φs)) + PrDr(1 − Fr(φr))
. (10)

For the lower bound, if the throughput requirement α is less
than θLs , namely

α <
PsDs

∫∞

φ∗ rdFs(r)

t+ PsDs(1− Fs(φ∗)) + PrDr(1− Fr(φ∗))
,

the optimal threshold pair (φ∗,φ∗) for the unconstrained case
is located in the feasible domain, which indicates that this pair
is also the optimal solution for the constrained problem. In this
case, the throughput constraint is inactive.
For the upper bound, let θUs denote the maximum possi-

ble throughput on secure links. Apparently, the throughput
requirement α cannot be greater than θUs . To determine θUs ,
we set φr to approach ∞ and derive the optimal threshold
for secure links that maximizes the system overall throughput
following similar framework presented in Appendix B. It can
be shown that φs is equal to the maximum overall throughput
x∗. Also, since the threshold for regular links approaches
infinity, there is no throughput on regular links and the overall
throughput is equal to the throughput of secure links. Thus,
we have

θUs = x∗ = φs.

Therefore, based on Eq. (10), the maximum throughput of
secure links can be determined by

θUs =
Ps

∫∞

θU
s
rdFs(r)

t
Ds

+ Ps(1− Fs(θUs ))
.

The proposition is proved.

APPENDIX E
PROOF OF PROPOSITION 4.4

The average delay for secure links is given by

β = E[Ts] =
t+ Pr(1− Fr(φr))Dr

Ps(1− Fs(φs))
+Ds.

Thus, we have the following inequalities
t

Ps(1− Fs(φs))
+Ds ≤ β ≤

t+ PrDr

Ps(1− Fs(φs))
+Ds.

It follows that
t

Ps(β −Ds)
≤ (1− Fs(φs)) ≤

t+ PrDr

Ps(β −Ds)
.

Since Fs(·) is a rate distribution function, its value increases
with φs. Thus, it can be shown that

F−1
s (1−

t+ PrDr

Ps(β −Ds)
) ≤ φs ≤ F−1

s (1 −
t

Ps(β −Ds)
).

For convenience, the lower bound and the upper bound in
above inequalities are denoted by φL

s and φH
s , respectively.

Furthermore, we consider E[Rs
NDs], which is given by

E[Rs
NDs] =

∫∞

φs
rdFs(r)

(1− Fs(φs))
Ds.

Since E[Rs
NDs] is a function increasing with φs, it can be

shown that
∫∞

φL
s
rdFs(r)

(1 − Fs(φL
s ))

Ds ≤ E[Rs
NDs] ≤

∫∞

φH
s
rdFs(r)

(1− Fs(φH
s ))

Ds.

Moreover, based on E[Rs
NDs]− αE[Ts] = 0 and E[Ts] = β,

we have
E[Rs

NDs] = αβ.

Hence, it can be shown that
∫∞

φL
s
rdFs(r)

β(1− Fs(φL
s ))

Ds ≤ α ≤

∫∞

φH
s
rdFs(r)

β(1 − Fs(φH
s ))

Ds.

This proves Proposition 4.4.

APPENDIX F
PROOF OF PROPOSITION 5.1

We can define the profit of stopping rule N as

RNDN − x∗TN − ωT
′

pw + γω,

where T ′

pw denotes the time from the beginning of contention
period for stopping rule N to the end of the next transmission
on potential-worst links. Furthermore, L∗ is defined as the
maximum expected profit for stopping rules and has the
identical expression as the optimization formulation presented
in Section V-B. Similar with Appendix B, to solve the opti-
mization problem in Section V-B, we only need to find the
optimal stopping rule that maximizes the expected stopping
profit. In addition, note that L∗ is equal to zero.
If a link from the set ξ takes the channel successfully, the

profit for transmitting a packet on this link can be expressed
as

Rs,pwDs − x∗Ds − ωDs + γω − (x∗ + ω)Tcont, (11)

where Rs,pw is the transmission rate on this link and follows
the distribution

Fs,pw(r) =
1

∑

m∈ξ Ps,m

∑

m∈ξ

Ps,mFs,m(r).

If a secure link which is not a potential-worst one wins the
channel contention, the profit for transmitting immediately is

Rs,nwDs − x∗Ds − ωDs − ωE[Tpw] + γω − (x∗ + ω)Tcont

where Rs,nw denotes the transmission rate on the link that
successfully takes the channel and follows the distribution

Fs,nw(r) =
1

∑

m/∈ξ Ps,m

∑

m/∈ξ

Ps,mFs,m(r).

According to the KKT conditions [29], ω (E[Tpw]− γ) = 0.
The above profit expression can be simplified as

Rs,nwDs − x∗Ds − ωDs − (x∗ + ω)Tcont.
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As a result, the average profit for transmitting immediately
on the secure link that wins the channel contention can be
denoted as

RsDs −
∑

i∈ξ Ps,i

Ps
[x∗Ds+ωDs−γω+(x∗+ω)Tcont]

−
Ps−

∑
i∈ξ Ps,i

Ps
[x∗Ds+ωDs+(x∗+ω)Tcont]

= RsDs − x∗Ds − ωDs +
∑

i∈ξ Ps,i

Ps
γω − (x∗ + ω)Tcont,

where Rs follows the distribution
∑

i∈ξ Ps,i

Ps
Fs,pw(r) +

Ps −
∑

i∈ξ Ps,i

Ps
Fs,nw(r) = Fs(r).

Thus, if this profit is greater than the maximum expected
profit with skipping this transmission and waiting for the next
stopping time, namely

RsDs − x∗Ds − ωDs +

∑

i∈ξ Ps,i

Ps
γω ≥ L∗,

then the packet is transmitted. Hence, the threshold for secure
links is given by

φs = x∗ + ω −

∑

i∈ξ Ps,i

Ps

γω

Ds
.

The regular case can be derived similarly as that in Appendix
B. If

RrDr − x∗Dr − ωDr − ωE[Tpw] + γω ≥ L∗,

namely, Rr ≥ x∗+ω, the regular packet is transmitted on the
link that wins the channel contention. In summary, the optimal
threshold pair is given by

{

φs = x∗ + ω −
∑

i∈ξ Ps,i

Ps

γω
Ds

,
φr = x∗ + ω.

(12)

To calculate the optimal threshold pair, the maximum ex-
pected profit equation is derived as follows. Considering the
first successful channel contention, if a potential-worst secure
link wins the channel contention, it starts its transmission only
when Rs,pw ≥ φs. In this case, the profit is given by

Rs,pwDs − x∗Ds − ωDs + γω − (x∗ + ω)kt,

where k is the number of time slots before the first successful
channel contention. Note that the above equation is identical
with Eq. (11) when Tcont is equal to kt. On the other hand,
if Rs,pw < φs, the transmission opportunity is skipped and
then maximum expected profit is L∗− (x∗+ω)kt. Combining
previous two cases, if a potential-worst link wins the channel
contention, the maximum profit following the optimal stopping
rule can be expressed as

(Rs,pw−φs)
+Ds+γω

∑

i/∈ξ Ps,i

Ps
u(Rs,pw−φs)− (x∗+ω)kt,

where (·)+ denotes max{·, 0} and u(·) is the step function.
Similarly, if a secure link which is not potential-worst wins
the contention, the maximum profit is given by

(Rs,nw−φs)
+Ds−γω

∑

i∈ξ Ps,i

Ps
u(Rs,nw−φs)−(x∗+ω)kt.

If a regular link contends the channel successfully, the max-
imum profit can be derived as (Rr − φr)+Dr − (x∗ + ω)kt.
Therefore, we have

L∗ = (
∑

i∈ξ Ps,i)E[(Rs,pw − φs)+Ds

+γω
Ps−

∑
i∈ξ Ps,i

Ps
u(Rs,pw − φs)− (x∗ + ω)kt]

+(Ps −
∑

i∈ξ Ps,i)E[(Rs,nw − φs)+Ds

−γω
∑

i∈ξ Ps,i

Ps
u(Rs,nw − φs)− (x∗ + ω)kt]

+PrE[(Rr − φr)+Dr − (x∗ + ω)kt].

Rearranging the above equation, we get

(x∗ + ω)t=PsDsE[(Rs−φs)+]+PrDrE[(Rr−φr)+]

+
(Ps−

∑
i∈ξ Ps,i)(

∑
i∈ξ Ps,i)γω

Ps
(Fs,nw(φs)−Fs,pw(φs)).

(13)

In addition, based on the KKT conditions, we have

ω (E[Tpw]− γ) = 0, (14)

where Tpw can be expressed as

Tpw =
t+ Pr(1 − Fr(φr))Dr + Ps(1− Fs(φs))Ds

(
∑

i∈ξ Ps,i)(1 − Fs,pw(φs))
.

Combining Eqs. (12), (13), and (14), (x∗,ω) can be solved
with LMA [30]. Following that, the optimal threshold pair
can be calculated according to Eq. (12).
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