Sparse and Greedy:
Sparsifying Submodular Facility Location Problems

Erik M. Lindgren, Shanshan Wu, Alexandros G. Dimakis
The University of Texas at Austin
Department of Electrical and Computer Engineering
erikml@utexas.edu, shanshan@utexas.edu, dimakis@austin.utexas.edu

Abstract

Submodular facility location functions are widely used for summarizing large
datasets and have found applications ranging from sensor placement, image re-
trieval, and clustering. A significant problem is that evaluating such functions typ-
ically requires the calculation of pairwise benefits for all items, which is compu-
tationally unmanageable for large problems. In this paper we propose a sparsifi-
cation method that only computes nearest-neighbor benefits and can dramatically
accelerate submodular greedy optimization. We show that the optimal solution
of the sparsified problem will be at most a factor of a half from optimal, under
minimal assumptions.

1 Introduction

Submodular optimization is an effective tool in machine learning theory and practice. Submodular
functions satisfy a diminishing returns property that naturally applies to machine learning tasks such
as data summarization, network monitoring, and clustering. One function that has been featured
prominently is the submodular facility location (SFL) function. Given two sets, V' and I, and a
benefit matrix, choose a small set A from V' such that the average benefit each element of I has to
its most beneficial element in A is maximized. When [ = V/, the problem becomes a version of the
k-medoids clustering problem.

This function has been used as an objective function to choose a set of documents or images that
summarize a larger corpus [1} 2], to pick a set of locations to monitor in order to quickly identify
important events in sensor or blog networks [3l 4]], as well as clustering [5].

The SFL problem is NP-Hard and so approximation algorithms must be used to optimize it. The
greedy algorithm gives a (1 — 1/e)-approximation to the optimal solution by the classic result of
Nembhauser, Wolsey, and Fisher [6]. This approximation factor is tight: by appropriate choice of the
benefit matrix, we can reduce an instance of the maximum coverage problem to an instance of SFL,
which was shown by Feige to be NP-Hard to get a (1 — 1/e + ¢)-approximation for all ¢ > 0 [7]].

One issue is that the greedy algorithm has super-quadratic complexity O(|V||I||A|). Because of
this, there has been a large amount of work on improving the runtime of the greedy algorithm at the
expense of approximation error. Specifically for the SFL problem, Wei, Iyer, and Bilmes considered
sparsifying the benefit matrix first by using nearest neighbor methods and then running greedy using
the sparsified matrix [8]]. This work reported impressive 20x-80x speedups compared to the greedy
algorithm with negligible empirical difference in the objective value.

Inspired by [8]] we improve the theoretical analysis of the approximation error introduced by sparsi-
fication. Specifically, Wei et al. [8] require a strong assumption on the benefit matrix coming from a
probability distribution, as well as | A| = O(|V|). In this paper we obtain a constant factor approxi-
mation for nearest neighbor sparsification even after removing all assumptions besides those needed



for the greedy algorithm. We can also get results for other values of |A|, and if |A] = O(|V]), our
analysis shows that sparser matrices are possible compared to what was previously known.

Recently, Mirzasoleiman et al. [9] introduced a random sampling greedy algorithm that surprisingly
has complexity independent of the size of A while maintaining a constant factor approximation.
We show that nearest neighbor methods can be successfully combined with their method to obtain
significant speedups. To the best of our knowledge, the proposed algorithm is significantly faster
for optimizing SFL functions compared to the previous state of the art while maintaining empirical
performance and provable guarantees similar to greedy.

2 Problem Formulation and Background

We define the submodular facility location problem as follows:

Submodular Facility Location (SFL) Problem. Given sets V' and I, a benefit matrix C' € ]R%V,
and a cardinality constraint k, return the set

arg maXZmax Cij. (1)
|Al<k o7 I€4
To simplify notation, we assume that |V| = |I| = n. It is simple to generalize to the case where V'

and [ are not the same size.

We define an objective function F': 2V R>0 as F'(0) = 0 and for all other sets,

Z max Cij. )

LEI

The function F' is submodular, since for all j € V and sets A C B C V' \ {j}, we have F(A U
{j})—F(A) > F(BU{j})— F(B), that s, the gain of an element is diminishes as we add elements.
Since we assumed the elements of C' are nonnegative, we know that F' is monotone, since for all
A C B CV,wehave F(A) < F(B). We also have F' normalized, since () = 0. Thus by [6] the
greedy algorithm gives a (1 — 1/¢)-approximation to the optimal solution.

The greedy algorithm works by starting with the empty set, then for & iterations adding to A the
element which increases the value of F' the most based on what is currently in A. For each element
of I, if we cache the current most beneficial element in A, we can calculate the gain of an element
of V in time O(n), which means the greedy algorithm runs in time O(n2k).

The STOCHASTICGREEDY algorithm of Mirzasoleiman et al. works similarly, except mstead of
calculating the gain of every element in V' \ A, we first take a random sample of size 7 ln =. This
returns a set with expected error a factor of (1 — 1/e — ¢) from the optimal solution and has runtime
O(n”log ;) [91.

3 Using Sparsified Benefit Matrices

3.1 Algorithm and Approximation Guarantee

If C is a sparse matrix, we can associate a bipartite graph with the matrix by having and edge
between j € V and ¢ € I whenever C;; > 0. We can use the graph to calculate the gain of an
element much quicker, since we only need to look at the neighbors of the element versus the entire
set I. Algorithm [I| demonstrates using a sparse matrix in the STOCHASTICGREEDY algorithm for
SFL.

However, our problem instance may not have a sparse matrix. One way to transform the original
matrix into a sparse one is by only keeping the values in the benefit matrix C' that are ¢-nearest
neighbors, that is, for every element ¢ in I, we only keep the top ¢ elements of C;1,Cia, ..., Cip
and set the rest equal to zero. This leads to a matrix with n¢ nonzero elements. We then want to get
a good solution to the original problem by solving SFL using the sparse matrix. Our main theorem
is that we can set the sparsity parameter ¢ to be O(% log 7)—which is a significant improvement
for large enough k—while having the optimal solution to the sparsified problem be at most half the
value of the solution to the original problem.



Algorithm 1 STOCHASTICGRAPHGREEDY for SFL
Input: benefit matrix C, sparsity graph G = (V, I, E)
define function N (j): return the neighbors of j in G
foralli € I:
B; <0 > Caches for the value of the current best element in A
A0
for k iterations:
V' < random sample from V' \ A of size %In 1
forall j € V':

gj < 0
forall i € N(j):
g;j < g; + max(Cs; — 5;,0) > Add the gain element j gives to i

J* 4 argmaxy. g;
A+ Au{j*}
foralli € N(5*):

Bi < max(B;, Cyj+) > Update the caches for the neighbors of j*

return A

Theorem 1. Let O; be the optimal solution to SFL using the benefit matrix sparsified using t-nearest
neighbors. Let t*(n, k) be the smallest value of the sparsity parameter t such that % (1 +Int) < k.

For any t > t*(n, k), we have F(O;) > 1OPT.

Thus if we optimize the sparse instance of the problem with an o approximation algorithm, then we
are at most a factor of /2 from the optimal solution.

It can be checked that we have

t*(n,k) <5 [ﬁ max (lnﬁ, 1)_‘ . 3)
k k

Thus if & = Q(n), we can take the sparsity parameter ¢ = O(1), which means that the benefit

matrix C has only O(n) nonzero entries. Also note that the only assumption we need is that the

benefits between elements are nonnegative. When k = €2(n), previous work was only able to take

t = O(log n) and required the benefit matrix to come from a probability distribution [8].

The proof of Theorem|I]is graph-theoretic. The following is our key lemma.

Lemma 2. Let G = (V1,Va, E) be a bipartite graph such that each element of Va has at least t
neighbors in Vi and |V1| < t|Va|. Then there exists a set I' C Vi such that every element of V has

a neighbor in I' and
\A V2|
< 14+1In(t . 4
o< S (em (g @

The lemma says that for any bipartite graph where every right vertex as degree at least £ must have
a small left dominating set. The value of ¢*(n, k) comes from needing a left dominating set of size
at most k.

Since the sparsification depends on the number of elements being selected k, if k is small we may
want to set ¢t smaller than the value allowed by Theorem[I] The following corollary gives approxima-

tion bounds for setting ¢ as if we were to choose ¢k elements, for all integer adjustment parameters
L.

Corollary 3. Let t) be the smallest value of t such that %(1 +Int) < lk. Foranyt > t;, we have
F(Oy) > ﬁOPT.

Many methods of finding nearest neighbor do not find the exact ¢-nearest neighbor, but instead find
approximate neighbors with some probability. The approximation we consider is the following, for
some element ¢ with the true nearest neighbors being ji,...,j:, we return a set of approximate
neighbors Jq, ..., j; such that each approximate neighbor appears with probability 1 — ¢ and the
benefit of an approximate neighbor is at least a factor of 1 — e from the corresponding true nearest
neighbor. We will call these (1 — €)-approximate ¢-nearest neighbors.



¢ | Speedups (Greedy + t-NN) | Speedups (Greedy) | Relative Value
1 1.8 4.4 0.999
2 3.0 8.5 0.994
4 6.4 20.4 0.991
8 18.0 46.0 0.975

Figure 1: We show the speedups and relative value of STOCHASTICGRAPHGREEDY compared to
STOCHASTICGREEDY [9]. We set the sparsity in STOCHASTICGRAPHGREEDY to be the smallest
value of ¢ such that % (1+In¢) < k for various values of the adjustment parameter £. We set the error
€ of STOCHASTICGREEDY to be such that the two methods have the same theoretical approximation
guarantee. We compare the runtime both including and not including the time to build the ¢-nearest
neighbor graph.

Corollary 4. Let O, be the optimal solution to SFL using the benefit matrix sparsified using (1 — e€)-
approximate t-nearest neighbors. For all t > t*(n, k), we have E(F(0;)) > (1 — €)>0OPT.

3.2 Runtime

Ignoring the time to build the graph, the time to run StochasticGraphGreedy using the t-nearest
2

neighbor graph for ¢t = t*(n, k) is O(%-log % log 1). Thus for k > lognlog L, we can run our

algorithm in sub-quadratic time.

There has been a large amount of work on the problem of quickly building ¢-nearest neighbor graphs.
If V and I are low dimensional vectors, then space partitioning methods and metric data structures
such as kd-trees [10] work well and are exact. In high dimensional spaces locality-sensitive hash-
ing gives good approximate results with theoretical guarantees [11l]. Hashes exists for a variety of
distances and similarity measures such as Euclidean [[12f], cosine [[13]], and dot product [21]].

Nearest neighbor methods other than LSH have also been shown to work well for a variety of
machine learning problems [[14} [15,[16]], see also [[17] for GPU methods .

4 Experiments

We consider the problem of automatically classifying the genres of products such as music and
movies and finding the quintessential element in each genre. First we need to associate each item
with a vector. To do this we run nonnegative alternating least squares on rating data to fit a low rank
matrix to the ratings data and get a feature vector for each element. We then compare vectors using
the dot product. We use the dot product rather than the normalize dot product (cosine similarity)
because we want the quintessential movie to be one that was well received.

We use the Yahoo! Music ratings database to get ratings for close to 137 thousand songs [18]. We
then complete the ratings matrix with the Spark MLIib collaborative filtering library [19]. To create
the nearest neighbor graph, we use the LSH for inner product introduced by Neyshabur and Srebro
[20].

We then compare the runtime and value of STOCHASTICGRAPHGREEDY and STOCHASTIC-
GREEDY [9] for various values of the sparsity parameter t. We choose the approximation error €
in STOCHASTICGREEDY so that the two methods have the same theoretical approximation error.
We set the number of cluster centers k to be 500. We chose the LSH parameters so that 99% of
elements have ¢ neighbors. For runtime, we compare the speed ups including and not including
the time to build the graph (see Figure[I). We see speedups of 18x, and not including the time to
build the graph we see speedups of 46x. STOCHASTICGRAPHGREEDY as always within 97.5% of
STOCHASTICGREEDY in objective value.

The Yahoo! Music database was anonymized, so we could not see the actual clusters made, but we
did the same process with the MovieLens ratings database [22]]. We show five cluster centers and the
five movies with highest dot product to the cluster center in Figure 2| As can be seen, each cluster



Happy Gilmore A Nightmare on Elm Street The Notebook Shawshank Redemption Pulp Fiction

Tommy Boy (3.55) Friday the 13th (3.34) August Rush (3.67) Schindler’s List (4.77) Black Mirror (4.67)

Billy Madison (3.52) Halloween IT (3.21) P.S. I Love You (3.67) The Usual Suspects (4.73)  Reservoir Dogs (4.67)
Dumb & Dumber (3.46) Hellbound: Hellraiser IT (3.16) The Holiday (3.66) Life Is Beautiful (4.63) American Beauty (4.65)
Ace Ventura: Pet Detective (3.38) A Nightmare on Elm Street 3 (3.13) Remember Me (3.60) Intouchables (4.55) A Clockwork Orange (4.64)
Road Trip (3.32) Child’s Play (3.10) A Walk to Remember (3.54) Saving Private Ryan (4.55) Trainspotting (4.58)

Figure 2: Five cluster centers and a list of the five movies with the feature vector that has the highest
dot product with the cluster center (dot product contained in parenthesis). As can be seen, each
cluster seems quite interpretable and the representative movie seems to indeed capture the nature of
each group.

seems quite interpretable and the representative movie seems to indeed capture the nature of each
group.

S Appendix

Proof of Theorem[l} Let C (*) be the matrix sparsified by ¢-nearest neighbor, and C'*) be the matrix
C — C®, which is the matrix where the only elements not zeroed out in each row are those not in
the top ¢ largest elements. Similar to Equation (Z), we can define the functions F(*) and F(*) using
C® and C®. Let O be the optimal solution to the original SFL problem. Since O is the optimal
solution to the SFL problem with C*), we have F(Y)(0,) > F(")(0).

Now by Lemma 2} for ¢ > ¢*(n, k) we know that there exists a feasible solution I" such that every
element in I has at least one ¢-nearest neighbor in I'. Thus for each 7 € I, we have maxer C’i(;) >

max;ey C'i(;) > maX;eo C’i(;), since a t-nearest neighbor of ¢ has a larger benefit to ¢ than every
element that is not a ¢-nearest neighbor of <. This implies that

FOT) = FO(0), 5)
since it is true term by term in the sum defining F*) and F*), Thus we have
F(O) = Z max Cij
iel
_ ® . ~®
= max C’ij + C’ij

co
el ’

(
using Equation (3) < F®(0) + FO(I)
since O is optimal for F® < 2F® (Oy) (6)

O

Proof of Lemma|2] The proof uses the probabilistic method and is similar to Theorem 1.2.2 of [23]].

Let |Vi| = n and |V2| = m. Create a set X by picking each vertex in V; with probability p. Now
for each vertex of V5 that does not have a neighbor in X, pick an arbitrary neighbor. Call this set of
vertices Y. Every vertex thus has a neighborin X UY".

We have E(X) = np and E(Y) < m(1 — p)¢, since we will only add a vertex to Y if there is a
vertex in V, with none of its ¢ neighbors chosen. Thus we have E(|X U Yl) < np+ m(l - p)t.
Using 1 + 2 < e” and then optimizing for the best value of p gives p = 3 In %t This is a valid
probability when n < mt (which we assumed) and m < net /t. (For the latter case, Equation (Ef[) is
still true, just suboptimal when compared to taking I' = V7). This gives

E(XUY]|) < % (1—|—ln (t%)) %



which implies that there must be at least one instance of X UY with | X U Y| less than this bound.
We will take I" to be this instance. O

Proof of Corollary[3] Let O be the optimal solution of size k, L be the optimal solution of size ¢k,
L; be the optimal solution of size ¢k in the sparsified problem with ¢t = ¢*(n, ¢k), and O; be the
optimal solution of size k in the sparsified problem with ¢t = ¢*(n, £k). We have

F(0) < F(L) < 2FW(L;) < 20FY(0;) < 20F(Oy). (8)
The first inequality is since F' is monotone and the second is from Equation (). Partition the
elements of L, such that L, = A; U Ay U ... A, for arbitrary A’s, each of size k. By sub-

modularity and the fact that O, is optimal for F(Y) on sets of size k, we have F()(L;) <
FO(A) + FO(Ay) + -+ FO(Ay) < LFM(0Oy;), which gives the third inequality. O

Proof of Corollary[d} Let F® be the function defined with the (1 — €)-approximate ¢-nearest neigh-

bor matrix. We have E(E®)(0,)) > (1 — €)2F®(0,), since we know that for each element of I,
with probability 1 — e they see an element within a factor of 1 — € of the element that would have

had the highest value of the exact ¢-nearest neighbors. The rest follows from O, being optimal for
F® and Theorem|1] O
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